Math, asked by hungund3437, 9 days ago

which term of the A.P. 5,9,13,... will be 80 less than its 51st term.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given AP series is

\rm :\longmapsto\:5,9,13, -  -  -  -  -

So, Here,

First term, a = 5

Common difference, d = 9 - 5 = 4

Let we assume that aₙ is 80 less than 51 st term.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

According to statement,

\red{\rm :\longmapsto\:a_n \:  =  \: a_{51} - 80}

\rm :\longmapsto\:a + (n - 1)d = a + (51 - 1)d - 80

\rm :\longmapsto\: (n - 1)d = 50d - 80

On substituting the value of d = 4, we get

\rm :\longmapsto\: (n - 1)4 = 50 \times 4 - 80

\rm :\longmapsto\: 4(n - 1)= 200 - 80

\rm :\longmapsto\: 4(n - 1)= 120

\rm :\longmapsto\: n - 1= 30

\rm \implies\:\boxed{ \tt{ \: n \:  =  \: 31 \: }}

Hence,

\rm \implies\:\boxed{ \tt{ \:  {31}^{st} \: term \: is \: 80 \: less \: than \:  {51}^{st} \: term \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.
Answered by TanmayStatus
3

\large\underline{\sf\red{Solution-}}

Given AP series is

\blue{\rm :\longmapsto\:5,9,13, - - - - -}

So, Here,

First term, a = 5

Common difference, d = 9 - 5 = 4

Let we assume that aₙ is 80 less than 51 st term.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}\end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.
  • a is the first term of the sequence.
  • n is the no. of terms.
  • d is the common difference.

Tʜᴜs,

According to statement,

\red{\rm :\longmapsto\:a_n \: = \: a_{51} - 80}

\blue{\rm :\longmapsto\:a + (n - 1)d = a + (51 - 1)d - 80}

\orange{\rm :\longmapsto\: (n - 1)d = 50d - 80}

On substituting the value of d = 4, we get

\green{\rm :\longmapsto\: (n - 1)4 = 50 \times 4 - 80}

\purple{\rm :\longmapsto\: 4(n - 1)= 200 - 80}

\red{\rm :\longmapsto\: 4(n - 1)= 120}

\blue{\rm :\longmapsto\: n - 1= 30}

\pink{\rm \implies\:\boxed{ \tt{ \: n \: = \: 31 \: }}}

Hence,

\orange{\rm \implies\:\boxed{ \tt{ \: {31}^{st} \: term \: is \: 80 \: less \: than \: {51}^{st} \: term \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

Sum of n terms of an arithmetic sequence is,

\begin{gathered}\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}\end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.
  • a is the first term of the sequence.
  • n is the no. of terms.
  • d is the common difference.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

I hope it's helps you ❤️.

Please markerd as brainliest answer ✌️✌️.

Similar questions