Math, asked by daisy62, 1 year ago

which term of the AP: 121, 117, 113, ..., is it's first negative term? ( HINT: find n and an< 0).

Answers

Answered by Sudarshan33
17
The given A.P is 121, 117, 113…

Here, first term a = 121 and common difference, d = –4.

Let n th term be the first negative term of the given A.P.

∴ an < 0

⇒ 121 + (n – 1) (–4) < 0  (Since, an = a + (n – 1) d)

⇒ –4n + 125 < 0

⇒ – 4n < – 125



∴ n = 32  [Since, n is a natural number]

Thus, 32nd term is the first negative term of the given A.P. HOPE THIS HELPS ...


daisy62: Tanq so much
Answered by Anonymous
6

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}




\bf\huge AP = 121 , 117 \:and\: 113




\bf\huge a = 121 , d =&gt; 117 - 121 = -4




\bf\huge =&gt; a_{n} = a + (n - 1)d




\bf\huge =&gt; 121 - 4n + 4 = 125 - 4n




\bf\huge First\: Negative\: Term




\bf\huge = a_{n} &lt; 0




\bf\huge = 125 - 4 &lt; 0




\bf\huge = 125 &lt; 4n




\bf\huge = \frac{125}{4} &lt; n




\bf\huge = 31 \frac{1}{4} &lt;n




\bf\huge n \:is\: an\:integer\:and\:n &gt;31 \frac{1}{4}




\bf\huge The\:first\:Negative\:Term\:=\:32nd\:term





\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}



Similar questions