Math, asked by chintu1784, 10 months ago

Which term of the AP 21 18 15....is -81

Answers

Answered by ShírIey
199

AnswEr:-

35th term of the AP is -81

Step by Step Explanation :-

Given :-

First Term (a) = 21

Common Difference(d) = \sf \; a_2 \;-\;a_1

:\implies\sf \; 18 \;-\;21

:\implies\sf\; 3

:\implies\sf\;d = -3

\rule{150}2

To find :-

nth term

Finding :-

By using the Formula :-

\large\boxed{\sf{\red{an = a\;+\; ( n \;-\;1)d}}}

Here,

:\implies\sf \;an = -81

:\implies\sf \;a = 21

:\implies\sf \;d = - 3

\rule{150}2

Putting Values :-

:\implies\sf \; -81 = 21 +\;(n\; - \:1)\;-3

:\implies\sf \; -81 = 21 + \; 3n \; - \; 3

:\implies\sf \; -81 = 24 \;-\; 3n

:\implies\sf \; -105 = \;-3n

:\implies\sf \; n = \dfrac{- 105}{-3}

:\implies\large\boxed{\sf {\pink{n = 35}}}

Hence, The 35th term of the Given AP is -81.

\rule{150}2

Answered by Anonymous
12

 \huge \sf \fcolorbox{red}{pink}{Solution :)}

Given ,

  • First term = 21
  • Common difference = - 3
  • nth term = -81

We know that , the first nth term of an AP is given by

 \large \sf \fbox{a_{n} = a + (n - 1)d}

Substitute the known values , we get

 \sf \hookrightarrow - 81 = 21 + (n - 1)( - 3) \\  \\ \sf \hookrightarrow  - </em><em>102</em><em> = (n - 1)( - 3) \\  \\ \sf \hookrightarrow </em><em>34 </em><em>= (n - 1) \\  \\ \sf \hookrightarrow  n = </em><em>34 </em><em>+ 1 \\  \\  \sf \hookrightarrow n = </em><em>35</em><em>

Hence , 35 term of an AP is - 81

___________ Keep Smiling ☺

Similar questions