Math, asked by ajaymishra7575, 10 months ago

Which term of the AP 21,42,63,84...is210?

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Term=10th}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A.P= 21,42,63,84,.. \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Which \: term \: is \: 210 =?

• According to given question :

 \tt \circ \:First \: term ( a_{1} )= 21 \\  \\  \tt \circ \: Common \: difference(d) = 21 \\  \\  \tt \circ \: Last \: term ( a_{n} )= 210 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} = a + (n - 1)d \\  \\  \tt:  \implies  210 = 21 + (n - 1) \times 21 \\  \\ \tt:  \implies  210 = 21 + (n - 1) \times 21 \\  \\ \tt:  \implies 210 - 21= (n - 1) \times 21 \\  \\ \tt:  \implies 189 = (n - 1) \times 21 \\  \\ \tt:  \implies   \frac{189}{21}  =n - 1 \\  \\ \tt:  \implies 9 + 1   = n \\  \\  \green{\tt:  \implies  n = 10} \\  \\   \green{\tt \therefore 210 \: is \: 10th \: term \: of \: this \: A.P}

Answered by ғɪɴɴвαłσℜ
1

Aɴꜱᴡᴇʀ

☞ 210 is the 10th term of the given A.P

_________________

Gɪᴠᴇɴ

➜ A.P ➳ 21,42,63,84................

_________________

Tᴏ ꜰɪɴᴅ

➤ Which term of the A.P is 210?

_________________

Sᴛᴇᴘꜱ

❍ First let's find the value of a (first term) and d (common difference)

 \dashrightarrow{} \sf{}a = 21 \\  \\  \dashrightarrow{} \sf{}d = 42 - 21 = 21

So we know that,

  \underline {\boxed{ \sf\red{a_n = a+(n-1) d }}}

So substituting the values,

 \leadsto{} \sf{}a_n = a+(n-1) d \\  \\  \leadsto \sf{}210 = 21 + (n - 1)21 \\  \\  \leadsto \sf{}210 - 21 = (n - 1)21 \\  \\  \leadsto{} \sf{}189 = (n - 1)21 \\  \\  \leadsto \sf \cancel \frac{189}{21}  = (n - 1) \\  \\  \leadsto \sf{}9 + 1 = n \\  \\  \pink{ \leadsto{} \sf{}n = 10}

______________________

Similar questions