Math, asked by ayushchakma7, 10 months ago

which term of the ap 3,10,17....will be 84 more than its 11th term​

Answers

Answered by Anonymous
17

 \large\bf\underline{Given:-}

  • AP = 3, 10 , 17....

 \large\bf\underline {To \: find:-}

  • we need to find the term which will be 84 more than 11th term.

 \huge\bf\underline{Solution:-}

≫ AP = 3, 10 , 17

  • First term (a) = 3
  • Common difference (d) = 10 - 3 = 7

↱ an = a + (n - 1)d

 \tt \rightarrowtail \: a_ {11} = a + 10d \\  \\ \tt \rightarrowtail \: a_ {11} = 3 + 10 \times 7 \\  \\ \tt \rightarrowtail \: a_ {11} = 3 + 70 \\  \\ \bf\rightarrowtail \: a_ {11} = 73

Now , finding the term which is 84 more than it's 11th term

\tt \dashrightarrow \: a_ n = a_{11} + 84 \\  \\ \tt \dashrightarrow \: a_ n = 73 + 84 \\  \\ \bf\dashrightarrow \: a_ n =15 7

Now finding the term:-

\tt \dashrightarrow \: 157 = a + (n - 1)d \\  \\ \tt \dashrightarrow \: 157 = 3 + (n - 1)7 \\  \\ \tt \dashrightarrow \:157 - 3 = (n - 1)7 \\  \\ \tt \dashrightarrow \:  \cancel\frac{154}{7}  = (n - 1) \\  \\ \tt \dashrightarrow \:22 = n - 1 \\  \\ \tt \dashrightarrow \:n = 23

So,

23 is the term which is 84 more than it's 11th term.

\rule{200}3

Answered by Anonymous
20

\sf\huge{\underline{\underline{Question:-}}}

which term of the ap 3,10,17....will be 84 more than its 11th term.

\sf\huge{\underline{\underline{Given:-}}}

  • 1st term (a) = 3
  • common difference (d) = 7
  • \sf a_{11}=?

\sf\huge{\underline{\underline{Identity\:Used:-}}}

\large{\fbox{\red{\underline{\blue{a_n= a+(n-1)d}}}}}

\sf{\underline{\underline{\red{Substitute \:all\:values\:in\: formula:-}}}}

\sf→ a_n=a+(n-1)d\\\sf→ a_{11}=3+(11-1)7\\\sf→ a_{11}=3+(10)7\\\sf→ a_{11}=3+70\\\sf→ {\fbox{\red{\underline{a_{11}= 73}}}}

Now,

According to question

  • we have to find the term 84 more than 11th term .

\sf→ a_n= a_{11}+84. ( a_{11}=73)\\\sf→ a_n=73+84 = a_n= 157

Therefore,

\sf→ a_n=a+(n-1)d \\\sf→ 157=3+(n-1)7\\\sf→ 157-3=(n-1)7\\\sf→ \frac{154}{7}=n-1\\\sf→ 22=n-1 \\\sf{\fbox{\underline{\blue{n=23}}}}

Similar questions