Math, asked by XxCelestialStarXx, 1 month ago

which term of the AP 3,8,13,18,.... is 78???​

Answers

Answered by Anonymous
6

\boxed{ \underline{ \underline{❥\footnotesize \tt \blue{ \:  Given:- }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{a = 3}

 \footnotesize \tt{d = 5}

 \footnotesize \tt{an = 78}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{ \underline{ \underline{❥\footnotesize \tt \blue{ \:  Find:- }}}}

 \footnotesize \tt{n = ?}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{ \underline{ \underline{❥\footnotesize \tt \blue{ \:  Solution:- }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{an = a + (n - 1)d}

 \footnotesize \tt{78 = 3 + (n - 1)5}

 \footnotesize \tt{78 - 3 =  (n - 1)5}

 \footnotesize \tt{75 =  (n - 1)5}

 \tt{ \frac{75}{5}  = \:  } \footnotesize \tt{ (n - 1)}

 \tt{  \cancel\frac{75}{5}  = \:  } \footnotesize \tt{ (n - 1)}

 \footnotesize \tt{15 =  (n - 1)}

 \footnotesize \tt{15 + 1 =  n }

\boxed{ \underline{ \underline{\footnotesize \tt{❥ \: 16 =  n }}}}

Answered by IISLEEPINGBEAUTYII
3

Answer:

an=a+(n−1)d

\footnotesize \tt{78 = 3 + (n - 1)5}78=3+(n−1)5

\footnotesize \tt{78 - 3 = (n - 1)5}78−3=(n−1)5

\footnotesize \tt{75 = (n - 1)5}75=(n−1)5

\tt{ \frac{75}{5} = \: } \footnotesize \tt{ (n - 1)}

5

75

=(n−1)

\tt{ \cancel\frac{75}{5} = \: } \footnotesize \tt{ (n - 1)}

5

75

=(n−1)

\footnotesize \tt{15 = (n - 1)}15=(n−1)

\footnotesize \tt{15 + 1 = n }15+1=n

\boxed{ \underline{ \underline{\footnotesize \tt{❥ \: 16 = n }}}}

❥16=n

Similar questions