Math, asked by syedj5284, 8 months ago

which term of the AP 3,8,13,18........................... is 96?​

Answers

Answered by rajputaman7777777
0

Answer:

a=3 , d=8-3=5 , an=96

an= a+ (n-1)d

96 = 3+ (n-1)5

96-3 = 5n-5

93+5 = 5n

98 = 5n

n = 98/5

n= 19.5

since n cannot be in decimal form therefore 96 is not the term of this Ap

Answered by Anonymous
2

\huge\underline\mathbb{\red S\pink{O}\purple{L} \blue{UT} \orange{I}\green{ON :}}

Given that,

which term of the AP 3,8,13,18........................... is 96?

Let,

  • a1 = 3
  • a2 = 8

Common difference (d) = a2 - a1

➡ 8 - 3 = 5

Now we have,

  • a = 3
  • d = 5
  • an = 96

\tt{By\;using\;n^{th}\:term\:formula }

\tt{⟹\:a_{n}\:=\:a\:+\:(n\:-\:1)d}

  • Substitute the values.

\tt{⟹\:96\:=\:3\:+\:(n\:-\:1) 5}

\tt{⟹\:96\:=\:3\:+\:5n\:-\:5}

\tt{⟹\:96\:=\:5n\:-\:2}

\tt{⟹\:96\:+\:2=\:5n}

\tt{⟹\:98\:=\:5n}

\tt{⟹\:n\:=\:\frac{98}{5}}

\tt{⟹\:n\:=\:19.6}

\underline{\boxed{\bf{\purple{∴\:Hence\:the\:value\:n\:is\:in\:decimials.\:So,\:96\:is\:not\:a\:term\:of\:AP.}}}}

Similar questions