Math, asked by swarup6969, 8 months ago

which term of the ap -67,-62,-57 ..... is the first positive term​

Answers

Answered by Anonymous
2

\red{\underline{\underline{Answer:}}}

\sf{15^{th} \ term \ of \ A.P. \ is \ positive \ term.}

\orange{Given:}

\sf{The \ given \ A.P. \ is }

\sf{-67,-62,-57,…}

\sf\pink{To \ find:}

\sf{First \ positive \ term \ of \ A.P.}

\sf\green{\underline{\underline{Solution:}}}

\sf{t1= -67}

\sf{t2= -62}

\sf{Common \ difference \ (d)=t2-t1}

\sf{t2-t1= -62-(-67)=5}

\sf{Multiple \ of \ 5 \ more \ than \ 67 \ is \ 70}

\sf{\therefore{n=\frac{70}{5}+1}}

\sf{n=14+1=15}

\sf\blue{\underline{\underline{Verification:}}}

\sf{tn=a+(n-1)d... formula}

\sf{t15=-67+(15-1)5}

\sf{t15=-67+14(5)}

\sf{t15=-67+70}

\sf{\therefore{t15=3}}

\sf\purple{\tt{\therefore{15^{th} \ term \ of \ A.P. \ is \ positive \ term.}}}

Answered by TheSentinel
41

\huge\underline\mathfrak\red{Answer:}

\rm\pink{  {15}^{th}  \ term \ is \ the \ first \ positive \ term \ of \ the \ AP}

_________________________________________

\sf\large\underline\green{Given:}

\rm{AP \ is \ -67, \ -62, \ -57  ......}

_________________________________________

\sf\large\underline\green{To \ Find:}

\rm{First \ positive \ term \ of \ the \ AP}

_________________________________________

\huge\underline\mathfrak\blue{Solution:}

\rm{First \ term \ of \ the \ AP :}

\rm{t(1)= -67}

\rm{Second \ term \ of \ the \ AP :}.

\rm{t(1)= -62}

\rm{Difference \ between \ two \ successive \ terms }

d = t2- t1

d =  - 62- ( - 67) = 5

\rm{now , \ multiple \ of \ 5 \ more \ than \ 67 \ is \ 70}

n = ( \frac{70}{5} ) + 1

n = 14 + 1

n = 15

\rm\pink{  {15}^{th}  \ term \ is \ the \ first \ positive \ term \ of \ the \ AP}

_________________________________________

\rm{hope \ it \ helps } :))

Similar questions