Math, asked by shivanialone996, 9 months ago

which term of the AP 8, 14, 20, 26---- will be 72 more than its 41 st term?​

Answers

Answered by Anonymous
10

Answer:-

 \sf \huge \: AP:8,4,20,26.... \\   \:  \\  \\ \sf \huge \mapsto \: a=8 \\  \\  \sf \huge \mapsto \: d=14-8=6 \\  \\  \bf \huge \: Let T_n=T_41+72 \\  \\  \tt \huge \longmapsto \: a+(n-1)d-a-40d=72 \\  \\ \tt \huge \longmapsto \:d(n-1-40)=72 \\  \\ \tt \huge \longmapsto \:6(n-41)=72 \\  \\ \tt \huge \longmapsto \:n-41=12 \\  \\\tt \huge \longmapsto \: n=12+41 \\  \\ \tt \huge \longmapsto \:n=53 \\  \\ </p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p> \bf \huge \bigstar \: Required  \:  \: term  \:  \: is  \:  \: 53 \\  \\ </p><p></p><p>\bf \huge \bigstar \:53  \: th  \:  \: term  \:  \: of  \:  \: AP \:  \:  will \:  \:  be  \: 72  \:  \: more  \:  \: than  \:  \: 41 \:  \:  th  \:  \: term.....</p><p>

Answered by SOURAVSKEHAWAT
2

Step-by-step explanation:

$$\begin{lgathered}\sf \huge \: AP:8,4,20,26.... \\ \: \\ \\ \sf \huge \mapsto \: a=8 \\ \\ \sf \huge \mapsto \: d=14-8=6 \\ \\ \bf \huge \: Let T_n=T_41+72 \\ \\ \tt \huge \longmapsto \: a+(n-1)d-a-40d=72 \\ \\ \tt \huge \longmapsto \:d(n-1-40)=72 \\ \\ \tt \huge \longmapsto \:6(n-41)=72 \\ \\ \tt \huge \longmapsto \:n-41=12 \\ \\\tt \huge \longmapsto \: n=12+41 \\ \\ \tt \huge \longmapsto \:n=53 \\ \\ \bf \huge \bigstar \: Required \: \: term \: \: is \: \: 53 \\ \\ \bf \huge \bigstar \:53 \: th \: \: term \: \: of \: \: AP \: \: will \: \: be \: 72 \: \: more \: \: than \: \: 41 \: \: th \: \: term.....\end{lgathered}$$

Similar questions