Math, asked by mohdazgar, 1 year ago

which term of the g.p 5,5√5,25----is 625 and find 11th term of it​

Answers

Answered by kartik2507
7

Step-by-step explanation:

first term = a = 5

2nd term = ar = 5√5

 \frac{ar}{a}  =  \frac{5 \sqrt{5} }{5}  \\ r =  \sqrt{5}

an = a {r}^{(n - 1)}  \\  625 = 5 \times  {( \sqrt{5}) }^{n - 1}  \\  \frac{625}{5}  =  {( \sqrt{5} )}^{n - 1}  \\ 125 =  { (\sqrt{5} )}^{n - 1}  \\  {5}^{3}  = ( { \sqrt{5} )}^{n - 1}  \\  ({( { \sqrt{5}) }^{2} )}^{3}  = ( { \sqrt{5}) }^{n - 1}  \:  \:  \:since \:  (5 =  \sqrt{5}  \times  \sqrt{5}  =  { (\sqrt{5}) }^{2} ) \\   {( \sqrt{5}) }^{6}   =  {( \sqrt{5}) }^{n - 1}  \\ bases \: are \: same \: powers \: to \: be \: equated \\ n - 1 = 6 \\ n = 6 + 1 \\ n = 7

625 is the 7th term of the GP

11th term

 an= a {r}^{(n - 1)}  \\ a11 = a {r}^{(11 - 1)}  \\  = 5 \times  {( \sqrt{5}) }^{10}  \\  = 5 \times  {( {5}^{ \frac{1}{2} } )}^{10}  \\  = 5 \times  {5}^{5}  \\   = {5}^{6}  \\  = 15625

hope you get your answer

Similar questions