Math, asked by braininfinity6091, 1 year ago

Which term of the geometric progression 1,2,4,8,....is 2048

Answers

Answered by rajeshp1997
41

Answer:

12 th term

Step-by-step explanation:

nth term in gp:

  • nth term in gp
  • tn = a {r}^{n - 1}
  • n=unknown
  • a = first term in gp which is 1
  • r= ratio which is 2/1=4/2=8/4=2
  • 2048 = 1  \times {2}^{n - 1}

n - 1 =  log_{2}(2048)

n - 1 = 11

n = 12

Answered by Syamkumarr
2

Answer:

2048 is 12th term of the given series

Step-by-step explanation:

Given geometric progression  1, 2, 4, ...2048

the general form of the geometric progression is  a , ar, ar ^{2} .. ar^{n-1}

here common ratio r =   \frac{ T_{ n}}{T_{n-1 }  } , and nth term  T_{n} = ar^{n-1}  , a is the first term

the given series 1, 2, 3, 4, ..2048

first term a = 1

common ratio  r = \frac{T_{2}}{T_{2-1} }  =   \frac{2}{1} = 2  

nth term = ar ^{ n-1} =  (1)  2^{ n-1}

let 2048 be the nth term ⇒    2^{n-1} =2048

                                          ⇒  2^{n} .  2^{-1} =2048

                                          ⇒  2^{n} . \frac{1}{2} = 2048

                                          ⇒  2^{n} =2048 (2)  [ 2^{11} =2048]

                                          ⇒ 2^{12} = 4096  

  ∴ 2048 is 12th term of the given series  

Similar questions