Math, asked by anurawnak, 4 months ago

Which term of the sequence 1/2, -1/4, 1/8,-1/16,.... is -1/256 ?​

Answers

Answered by amansharma264
11

EXPLANATION.

Sequence = 1/2,-1/4,1/8,-1/16+.-1/256.

As we know that,

First term of a GP = a = 1/2.

Common Ratio of GP = b/a.

⇒ -1/4/1/2 = -1/4 X 2/1 = -1/2.

⇒ 1/8/-1/4 = 1/8 X 4/-1 = -1/2.

General term of a G.P

⇒ a + a(r) + ar² + ar³ + = Tₙ = a(rⁿ⁻¹).

⇒ Tₙ term = -1/256.

Using the formula, we get.

⇒ Tₙ = a(rⁿ⁻¹).

⇒ -1/256 = (1/2).(-1/2)ⁿ⁻¹.

⇒ (-1/2⁸) = (-1/4)ⁿ⁻¹.

⇒ 2⁸ = 2²⁽ⁿ⁻¹⁾.

⇒ 8 = 2n - 2.

⇒ 10 = 2n.

⇒ n = 5.

Their term of the G.P = 5th term.

                                                                                         

MORE INFORMATION.

(1) = General term of a G.P.

General term (nth term) of a G.P a + a(r) + ar² +  = Tₙ = a(rⁿ⁻¹).

(2) = Sum of n terms of a G.P.

The sum of first n terms of an G.P is given by,

Sₙ = a(1 - rⁿ)1 - r = a - (r)(Tₙ)/1 - r where r < 1.

Sₙ = a(rⁿ - 1)/r - 1 = r(Tₙ) - (a)/r - 1. where r > 1.

Sₙ = n r where r = 1.

(3) = Sum of an infinite G.P.

The Sum of an infinite G.P with first term a and common ratio r,

r(-1 < r < 1  Or | r | < 1 ) is S∞ = a/1 - r.

Answered by Anonymous
15

{\large{\bold{\rm{\underline{Given \; that}}}}}

★ Sequence of G.P is given as ➝ 1/2, -1/4, 1/8, -1/16 .... = -1/256

{\large{\bold{\rm{\underline{To \; find}}}}}

★ 5th them of G.P

{\large{\bold{\rm{\underline{Solution}}}}}

★ 5th them of G.P = 5

{\large{\bold{\rm{\underline{Using \; concepts}}}}}

★ The common ratio of G.P is given by ?

★ The general term of GP is given by ?

{\large{\bold{\rm{\underline{Using \; dimensions}}}}}

★ The common ratio of G.P is given by ➝ b/a

★ The general term of GP is given by ➝ {\sf{a + a(r) + ar^{2} + ar^{3} = T_{n} = a(r^{n-1})}}

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

__________________

~ According to the question we can see that the 1st term of the sequence is 1/2

Henceforth,

{\frak{The \: common \: ratio \: (G.P) \: is \: b/a}}

~ According to the question and using the formula of the common ratio of G.P let's put the values,

✠ -1/4/1/2

  • Let us cross multiply !..

✠ -1/4 × 2/1

  • Multiplying !.

✠ -2/4

  • Cancelling the digits !..

✠ -1/2

__________________

~ Now let's see what to do !..

✠ 1/8/-1/4

  • Let us cross multiply !..

✠ 1/8 × 4/-1

  • Let's multiply !..

✠ 4/8

  • Let us cancel !..

✠ 1/2

__________________

{\frak{General \: term \: of \: GP \: is \: given \: by \: \rightarrow a + a(r) + ar^{2} + ar^{3} = T_{n} = a(r^{n-1})}}

\; \; \; \; \; \; \; \; \;{\tt{Here,}}

{\sf{\mapsto T_{n} \: term \: is \: -1/256}}

~ Let's put the values, according to the main formula..!

{\sf{a(r^{n-1})}}

{\sf{-1/256 \: = \: (1/2)(-1/2)^{n-1}}}

{\sf{-1/256 \: = \: (-1/4)^{n-1}}}

  • Law of exponents !..

{\sf{(-1/2^{8}) \: = \: (-1/4)^{n-1}}}

  • Again law of exponents !..

  • (+ = -) ; (- = +)

{\sf{2^{8} \: = \: 2^{2(n-1)}}}

  • Again law of exponents !.. and cancelling the digits !..

{\sf{8 \: = \: 2n \: - 2}}

  • (+ = -) ; (- = +)

{\sf{8 + 2 \: = 2n}}

{\sf{10 \: = 2n}}

{\sf{10/2 = n}}

{\sf{5 = n}}

{\sf{n = 5}}

{\frak{\red{Henceforth, \: 5 \: in \: term \: of \: GP}}}

{\large{\bold{\rm{\underline{Additional \; information}}}}}

Law of Exponents -

\; \; \; \; \; \; \;{\sf{\bold{\leadsto a^{m} \times a^{n} = \: a^{m+n}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (a^{m})^{n} \: = a^{mn}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto a^{m} \times b^{m} = (ab)^{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto a^{0} = 1}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto \dfrac{a^{m}}{b^{m}} = (\dfrac{a}{b})^{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto \dfrac{a^{m}}{a^{n}} = a^{m-n}}}}

Where, m - n ∈ N

Easy to remember about last rule ⬆️

\; \; \; \; \; \; \;{\sf{\bold{\leadsto x^{a} ÷ x^{b} = x^{a-b}}}}

It happens when a > b

\; \; \; \; \; \; \;{\sf{\bold{\leadsto x^{a} ÷ x^{b} = \dfrac{1}{x^{b-a}}}}}

It's happen when a < b

Law of Exponents -

\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\tt\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\tt{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\tt(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\tt\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\tt\sqrt[\tt n]{\tt a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}\end{gathered}

Attachments:
Similar questions