Math, asked by alkarathore50, 9 months ago

Which term of the sequence 15 , 19, 23 ,……….. is 63.

Answers

Answered by lingadallisuresh01
0

a1 =a1+(n-1)*d =11+(1-1)*4 =11

a2 =a1+(n-1)*d =11+(2-1)*4 =15

a3 =a1+(n-1)*d =11+(3-1)*4 =19

a4 =a1+(n-1)*d =11+(4-1)*4 =23

a5 =a1+(n-1)*d =11+(5-1)*4 =27

a6 =a1+(n-1)*d =11+(6-1)*4 =31

a7 =a1+(n-1)*d =11+(7-1)*4 =35

a8 =a1+(n-1)*d =11+(8-1)*4 =39

a9 =a1+(n-1)*d =11+(9-1)*4 =43

a10 =a1+(n-1)*d =11+(10-1)*4 =47

a11 =a1+(n-1)*d =11+(11-1)*4 =51

a12 =a1+(n-1)*d =11+(12-1)*4 =55

a13 =a1+(n-1)*d =11+(13-1)*4 =59

a14 =a1+(n-1)*d =11+(14-1)*4 =63

a15 =a1+(n-1)*d =11+(15-1)*4 =67

a16 =a1+(n-1)*d =11+(16-1)*4 =71

a17 =a1+(n-1)*d =11+(17-1)*4 =75

a18 =a1+(n-1)*d =11+(18-1)*4 =79

a19 =a1+(n-1)*d =11+(19-1)*4 =83

a20 =a1+(n-1)*d =11+(20-1)*4 =87

a21 =a1+(n-1)*d =11+(21-1)*4 =91

a22 =a1+(n-1)*d =11+(22-1)*4 =95

a23 =a1+(n-1)*d =11+(23-1)*4 =99

a24 =a1+(n-1)*d =11+(24-1)*4 =103

a25 =a1+(n-1)*d =11+(25-1)*4 =107

a26 =a1+(n-1)*d =11+(26-1)*4 =111

a27 =a1+(n-1)*d =11+(27-1)*4 =115

a28 =a1+(n-1)*d =11+(28-1)*4 =119

a29 =a1+(n-1)*d =11+(29-1)*4 =123

a30 =a1+(n-1)*d =11+(30-1)*4 =127

a31 =a1+(n-1)*d =11+(31-1)*4 =131

a32 =a1+(n-1)*d =11+(32-1)*4 =135

a33 =a1+(n-1)*d =11+(33-1)*4 =139

Answered by radhasahu862
9

Step-by-step explanation:

a=15, d=(19-15)=4 Tn= 63 n=?

Tn= a + (n-1)d

putting values,

63= 15+(n-1)4

63=15+4n-4

63=11+4n

63-11=4n

52=4n

n=52/4

n=13

Hope it helps u a lot.

Similar questions