Math, asked by raj6358, 1 year ago

while solving the given simultaneous equations by cramer's method, the determinants D, Dx and Dy were obtained as follows.

Attachments:

Answers

Answered by SushmitaAhluwalia
68

The equations are 2x + 3y = 4 and x + 2y = 5.

  • If the equations are

                        a_{1}x+b_{1}y=c_{1}----------(1)

                        a_{2}x+b_{2}y=c_{2}----------(2)

        Then

                 D=\left|\begin{array}{cc}a_{1} &b_{1}\\a_{2} &b_{2}\\\end{array}\right|   D_{x} =\left|\begin{array}{cc}c_{1} &b_{1}\\c_{2} &b_{2}\\\end{array}\right|  D_{y} =\left|\begin{array}{cc}a_{1} &c_{1}\\a_{2} &c_{2}\\\end{array}\right|   --------(3)

  • Given,

                D=\left|\begin{array}{cc}2&3\\1&2\\\end{array}\right|     D_{x} =\left|\begin{array}{cc}4&3\\5&2\\\end{array}\right|    D_{y} =\left|\begin{array}{cc}2&4\\1&5\\\end{array}\right|        ----------(4)

  • Comparing (3) and (4), we get

               a_{1}=2,b_{1}=3,c_{1}=4

               a_{2}=1,b_{2}=2,c_{2}=5

  • Substituting above values in (1) and (2), we get

                2x + 3y = 4

                  x + 2y = 5

Answered by partharkars
2

answer send me the following reason exceeded the blanks you

Similar questions