Math, asked by rahulmm10487, 10 months ago

white a
a quadratic poly
the sum &
product of whose zeroes are 3&-2.​

Attachments:

Answers

Answered by PURNA9239
1

Answer:

THE QUADRATIC POLYNOMIAL IS

 {x}^{2}  - 3x  - 2

Step-by-step explanation:

THE FORMULA TO FIND QUADRATIC POLYNOMIAL IS

k[ {x}^{2}  - ( \alpha  +  \beta )x - ( \alpha  \beta )]

here \:  \\  \alpha  +  \beta  = 3 \\  \alpha  \beta  =  - 2

k[ {x}^{2}  - (3)x + ( - 2)] \\ k[ {x}^{2}  - 3x - 2] \\ when \: there \: is \: no \:  \\ denominator \: in \: the \:  \\ given \: zeroes \: then \: the \:  \\ k \: value \: becomes \:  \\  \\ 1

therefore \\ 1( {x}^{2}  - 3x - 2) \\  {x}^{2}  - 3x - 2

HOPE IT WILL HELP YOU

PLZZ MARK AS BRAINLIST

Answered by BrainlyPopularman
12

GIVEN :

Sum of roots = 3

• Product of roots = -2

TO FIND :

quadratic polynomial = ?

SOLUTION :

• We know that a quadratic equation in form of sum of roots and Product of roots is –

 \\  \longrightarrow \large{ \boxed{{ \bold{ {x}^{2}  - (sum \:  \: of \:  \: roots)x + product \:  \: of \:  \: roots = 0}}}} \\

• So that –

 \\  \implies { \bold{ {x}^{2}  - 3x + ( - 2)=0 }} \\

 \\  \implies \large { \boxed { \bold{ {x}^{2}  - 3x - 2=0 }}} \\

VERIFICATION :

 \\  \longrightarrow { \bold{ sum \:  \: of \:  \: roots =  -  \dfrac{b}{a}  }} \\

 \\  \implies { \bold{  3 =  -  \dfrac{( - 3)}{1}  }} \\

 \\  \implies { \bold{  3 = 3 \:  \:   \:  \: \: (verified)  }} \\

 \\  \longrightarrow { \bold{ product \:  \: of \:  \: roots =    \dfrac{c}{a}  }} \\

 \\  \implies { \bold{   - 2 =   \dfrac{( - 2)}{1}  }} \\

 \\  \implies  { \bold{   - 2 =  - 2\:  \:   \:  \: \: (verified)  }} \\

Similar questions