Math, asked by yuviyuvraj1972006, 9 months ago

Who can solve the questions given in the attachment? i will give 100 thanks + follow you.

Attachments:

Answers

Answered by rocky200216
8

\huge\mathcal{\underbrace{SOLUTION:-}}

✍️ See the attachment figure .

GIVEN :-

  • A triangle ABC such that the bisectors of ⟨ABC and ⟨ACB meet at a point O .

  • \rm{\angle{ABO}\:=\:\angle{1}\:}

  • \rm{\angle{ACO}\:=\:\angle{2}\:}

  • \rm{\red{\implies\:\angle{B}\:=\:2(\angle{1})\:}}

  • \rm{\red{\implies\:\angle{C}\:=\:2(\angle{2})\:}}

To Prove :-

  • ⟨BOC = 90° + ⟨A/2 .

Proof :-

✍️ In ∆BOC, we have

  • ⟨1 + ⟨2 + ⟨BOC = 180° -----(1)

✍️ In ∆ABC,

  • ⟨A + ⟨B + ⟨C = 180°

\rm{\implies\:\angle{A}} + 2(\rm{\angle{1}}) + 2(\rm{\angle{2}}) = 180°

\rm{\implies\:\dfrac{\angle{A}}{2}\:+\:\angle{1}\:+\:\angle{2}\:=\:90^{\degree}\:}

\rm{\implies\:\angle{1}\:+\:\angle{2}\:=\:90\:-\:\dfrac{\angle{A}}{2}\:}

✍️ Now put the value of the above equation in the equation (1), we get

\rm{\implies\:90\:-\:\dfrac{\angle{A}}{2}\:+\:\angle{BOC}\:=\:180^{\degree}\:}

\rm{\purple{\implies\:\angle{BOC}\:=\:90^{\degree}\:+\:\dfrac{\angle{A}}{2}\:}}

✍️ Hence, Proved .

Attachments:
Similar questions