English, asked by muheen07132, 2 months ago

who does not like a good programme? make it assertive​

Answers

Answered by XBarryX
0

Answer:

Answer:

Given :-

The resístance of each resístors is 10 ohm resistors.

To Find :-

What is the maximum resístance make available using two resístors.

Formula Used :-

\clubsuit♣ Equívalent Resístance for series connection :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{R_{eq} =\: R_1 + R_2\: +\: . . . .\: +\: R_n}}}\\\end{gathered}↦Req=R1+R2+....+Rn

where,

\sf R_{eq}Req = Equívalent Resístance

\sf R_1R1 = Resístance of resístors R₁

\sf R_2R2 = Resístance of resístors R₂

Solution :-

Given :

\begin{gathered}\bigstar\: \rm{\bold{Resistance\: of\: resistors\: (R_1) =\: 10\: \text{\O}mega}}\\\end{gathered}★Resistanceofresistors(R1)=10Ømega

\bigstar\: \rm{\bold{Resistance\: of\: resistors\: (R_2) =\: 10\: \text{\O}mega}}★Resistanceofresistors(R2)=10Ømega

According to the question by using the formula we get,

\longrightarrow \sf R_{eq} =\: R_1 + R_2⟶Req=R1+R2

\longrightarrow \sf R_{eq} =\: 10\: \text{\O}mega + 10\: \text{\O}mega⟶Req=10Ømega+10Ømega

\longrightarrow \sf R_{eq} =\: (10 + 10)\: \text{\O}mega⟶Req=(10+10)Ømega

\longrightarrow \sf R_{eq} =\: (20)\: \text{\O}mega⟶Req=(20)Ømega

\longrightarrow \sf\bold{\red{R_{eq} =\: 20\: \text{\O}mega}}⟶Req=20Ømega

\therefore∴ The maximum resístance is 20 Ω . It is connected by equívalent resístance of series connection.

\begin{gathered}\\\end{gathered}

EXTRA INFORMATION :-

\clubsuit♣ Equívalent Resístance for párallel connection :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{\dfrac{1}{R_{eq}} =\: \dfrac{1}{R_1} + \dfrac{1}{R_2}\: +\: . . . .\: +\: \dfrac{1}{R_n}}}}\\\end{gathered}↦Req1=R11+R21+....+Rn1

where,

\sf R_{eq}Req = Equívalent Resístance

\sf R_1R1 = Resístance of resístors R₁

\sf R_2R2 = Resístance of resístors R₂

Answered by Anonymous
2

Answer:

Everyone likes a good programme.

Similar questions