English, asked by salmabari012, 1 month ago

who is boss of FF in Bangladesh triple R,Subroto,​

Answers

Answered by lovekesh20
0

Answer:

please following me

Explanation:

Mr Bhanu singh

Answered by sanjeetsrijan
0

Explanation:

ANSWER

Solution:-

\mathtt \red{ lim_{x \rightarrow0 }(cosec \: x \: - cot \: x)}lim

x→0

(cosecx−cotx)

If we put the value of X than cosec x will give undefined

Hence changing state of look:-

\divideontimes \: \: \: \mathtt \blue{ lim_{x \rightarrow0 }( \frac{1}{sin \: x} \: - \frac{cos \: x}{sin \: x} )}⋇lim

x→0

(

sinx

1

sinx

cosx

)

\divideontimes \: \: \: \: \mathtt \green{ lim_{x \rightarrow0 }( \frac{1 - cos \: x}{sin \: x})} = \mathtt \orange { lim_{x \rightarrow0 }( \frac{2 { \sin}^{2} \frac{x}{2} }{2sin \frac{x}{2} \cos \frac{x}{2} })}⋇lim

x→0

(

sinx

1−cosx

)=lim

x→0

(

2sin

2

x

cos

2

x

2sin

2

2

x

)

\divideontimes \: \: \: \: \: \ \: \mathtt \pink{ lim_{x \rightarrow0 }( \frac{ \sin \frac{x}{2} }{ \cos \frac{x}{2} })} =⋇ lim

x→0

(

cos

2

x

sin

2

x

)=

\divideontimes \: \: \: \: \: \mathtt \green{ lim_{x \rightarrow0 }( \tan \frac{x}{2} ) }⋇lim

x→0

(tan

2

x

)

\divideontimes \: \: \: \: \mathtt \red{if \: x \: tending \: to \: zero \: than \: \rightarrow}⋇ifxtendingtozerothan→

\divideontimes \: \: \: \: \: \mathtt \blue{ \boxed{ tan \frac{x}{2} = 0} }⋇

tan

2

x

=0

Similar questions