who is boss of FF in Bangladesh triple R,Subroto,
Answers
Answer:
please following me
Explanation:
Mr Bhanu singh
Explanation:
ANSWER
Solution:-
\mathtt \red{ lim_{x \rightarrow0 }(cosec \: x \: - cot \: x)}lim
x→0
(cosecx−cotx)
If we put the value of X than cosec x will give undefined
Hence changing state of look:-
\divideontimes \: \: \: \mathtt \blue{ lim_{x \rightarrow0 }( \frac{1}{sin \: x} \: - \frac{cos \: x}{sin \: x} )}⋇lim
x→0
(
sinx
1
−
sinx
cosx
)
\divideontimes \: \: \: \: \mathtt \green{ lim_{x \rightarrow0 }( \frac{1 - cos \: x}{sin \: x})} = \mathtt \orange { lim_{x \rightarrow0 }( \frac{2 { \sin}^{2} \frac{x}{2} }{2sin \frac{x}{2} \cos \frac{x}{2} })}⋇lim
x→0
(
sinx
1−cosx
)=lim
x→0
(
2sin
2
x
cos
2
x
2sin
2
2
x
)
\divideontimes \: \: \: \: \: \ \: \mathtt \pink{ lim_{x \rightarrow0 }( \frac{ \sin \frac{x}{2} }{ \cos \frac{x}{2} })} =⋇ lim
x→0
(
cos
2
x
sin
2
x
)=
\divideontimes \: \: \: \: \: \mathtt \green{ lim_{x \rightarrow0 }( \tan \frac{x}{2} ) }⋇lim
x→0
(tan
2
x
)
\divideontimes \: \: \: \: \mathtt \red{if \: x \: tending \: to \: zero \: than \: \rightarrow}⋇ifxtendingtozerothan→
\divideontimes \: \: \: \: \: \mathtt \blue{ \boxed{ tan \frac{x}{2} = 0} }⋇
tan
2
x
=0