Math, asked by anujkothawade73, 10 months ago

whole root 1- sinA/1+sinA=secA-tanA​

Attachments:

Answers

Answered by BrainlyTornado
10

QUESTION:

Prove that

\sqrt {\dfrac{1- sinA}{1+sinA}} =  \sec A- \tan A

GIVEN:

  \sqrt {\dfrac{1- sinA}{1+sinA}} =  \sec A- \tan A

TO PROVE:

  \sqrt {\dfrac{1- sinA}{1+sinA}} =  \sec A- \tan A

EXPLANATION:

  \sqrt {\dfrac{1- sinA}{1+sinA}} =  \sec A- \tan A

Take \ L.H.S \ as  \ \sqrt {\dfrac{1- sinA}{1+sinA}}

Multiply \ by \ \sqrt {\dfrac{1- sinA}{1 - sinA}} \ on \ both \ numeratorand \: denominator

\boxed{\large{\bold{(A + B)(A - B) = A^2 - B^2}}}

We will get

 \sqrt {\dfrac{(1- sinA)^{2} }{1^{2}  -  sin^{2} A}}

 \sqrt {\dfrac{(1- sinA)^{2} }{1 -  sin^{2} A}}

 \sf\boxed{\huge{\bold{ \sqrt{ {x}^{2} }  = x}}}

 \sf\boxed{\huge{\bold{1 -  sin^{2} A =  {cos}^{2} A}}}

 \sqrt {\dfrac{(1- sinA)^{2} }{cos^{2} A}}

\dfrac{1- sin \: A}{cos \: A}

 \dfrac{1}{ \cos A}  -  \dfrac{ \sin A}{ \cos A}

 \sec A -  \tan A

HENCE PROVED.

Similar questions