Math, asked by bablisharma261985, 5 hours ago

whole root cosectheta-1/cosectheta+1 + whole root cosectheta+1/ cosectheta-1 = 2sec theta​

Answers

Answered by datars211gmilcom
0

Answer:

your answer is given in the above photo

Attachments:
Answered by Anonymous
5

To prove :-

 \rm { \dashrightarrow  \sqrt{ \dfrac{ cosec  \theta - 1}{  cosec \theta + 1} } +  \sqrt{ \dfrac{  cosec \theta + 1}{ cosec \theta - 1} } = 2 \sec \theta  }

‎ ‎ ‎

Solution :-

» Consider LHS

 \rm { \dashrightarrow  \sqrt{ \dfrac{ cosec  \theta - 1}{  cosec \theta + 1} } +  \sqrt{ \dfrac{  cosec \theta + 1}{ cosec \theta - 1} }   }

» Rationalise dn. of fractions

 \rm { \dashrightarrow  \sqrt{ \dfrac{ cosec  \theta - 1}{  cosec \theta + 1} \times\dfrac{ cosec  \theta   -  1}{  cosec \theta  -  1}  } +  \sqrt{ \dfrac{  cosec \theta + 1}{ cosec \theta - 1} \times \dfrac{ cosec  \theta  +  1} {  cosec \theta + 1}}   }

 \rm { \dashrightarrow  \sqrt{ \dfrac{ (cosec  \theta - 1) ^{2} }{ ( cosec \theta + 1)(cosec  \theta - 1)}   } +  \sqrt{ \dfrac{ ( cosec \theta + 1)^{2} }{  ( cosec \theta + 1)(cosec  \theta - 1)}}   }

» (cosec A + 1)(cosec A - 1)= cosec²A -1

 \rm { \dashrightarrow  \sqrt{ \dfrac{ (cosec  \theta - 1) ^{2} }{ (cosec  ^{2}  \theta   - 1)}   } +  \sqrt{ \dfrac{ ( cosec \theta + 1)^{2} }{  (cosec   ^{2} \theta - 1)}}   }

» cosec²A - 1 = cot²A

 \rm { \dashrightarrow  \sqrt{ \dfrac{ (cosec  \theta - 1) ^{2} }{ (cot  ^{2}  \theta  )}   } +  \sqrt{ \dfrac{ ( cosec \theta + 1)^{2} }{  (cot   ^{2} \theta)}}   }

 \rm { \dashrightarrow  \sqrt{ \bigg( \dfrac{ cosec  \theta - 1 }{ \cot  \theta  }  \bigg) ^{2}   } +  \sqrt{  \bigg(\dfrac{ cosec \theta + 1}{  \cot   \theta} \bigg) ^{2} }   }

 \rm { \dashrightarrow   \dfrac{ cosec  \theta - 1 }{ \cot  \theta  }   } +  \dfrac{ cosec \theta + 1}{  \cot   \theta}

 \rm { \dashrightarrow   \dfrac{ cosec  \theta - 1 +cosec \theta + 1  }{ \cot  \theta  }   }

 \rm { \dashrightarrow   \dfrac{ 2cosec  \theta }{ \cot  \theta  }   }

» cot A = cosec A/sec A

 \rm { \dashrightarrow    \bigg(\dfrac{ 2cosec  \theta }{  \frac{ cosec \theta}{ \sec \theta}   } \bigg)   }

 \rm { \dashrightarrow    \bigg(\dfrac{ 2cosec  \theta  \times  \sec \theta}{ cosec \theta} \bigg)   }

 \rm { \dashrightarrow    \bigg(\dfrac{ 2  \times  \sec \theta}{1} \bigg)   }

 { \dashrightarrow  \boxed{  \green{2 \sec \theta}}}

» LHS = RHS

Hence proved

Similar questions