Why ball do not consider wave but electron do
Answers
Answer:
With all of this in mind, an electron in a stable atomic state does not move in the sense of a solid little ball zipping around in circles like how the planets orbit the sun, since the electron is spread out in a wave. Furthermore, an electron in a stable atomic state does not move in the sense of waving through space.
Note that an electron is a fundamental particle; it is not made out of anything else (according to our current experiments and theories). All fundamental particles interact as shapeless points when acting like particles. But not all quantum objects are fundamental, and therefore not all quantum objects are point particles. The proton, for instance, is not fundamental, but is instead composed of three quarks. The existence of particles inside a proton means that a proton must spread out to fill a certain space and have a certain shape. A proton is not a point particle, but is in fact a sphere with a radius of 8.8 × 10-16 meters. (Note that as a quantum object, a proton is not a solid sphere with a hard surface, but is really a quantized wave function that interacts in particle-like collisions as if it were a cloud-like sphere.) If the electron was composed of other particles, it could indeed have a shape when interacting like a particle. But it doesn't. The electron is a point particle.