Why do sn1 reactions prefer polar protic solvents?
Answers
Answered by
14
Formation of carbocation intermediate is the rate determining step.Since for the formation of stable intermediate carbocation, highly polar solvent is required. The negative part of the polar protic solvent interacts with the highly positive part and minimises the energy and makes it stable.
Plzzzzz mark me brainlist
Plzzzzz mark me brainlist
Answered by
2
( for mechanism of sn2 see attached file 1)
♦♦♦• Reaction is:
Stereospecific (Walden Inversion of configuration)
Concerted - all bonds form and break at same time
Bimolecular - rate depends on concentration of both nucleophile and substrate
♦♦♦• Substrate:
Best if primary (one substituent on carbon bearing leaving group)
works if secondary, fails if tertiary
♦♦♦• Nucleophile:
Best if more reactive (i.e. more anionic or more basic)
♦♦♦• Leaving Group: Best if more stable (i.e. can support negative charge well):
TsO- (very good) > I- > Br- > Cl- > F- (poor)
RF , ROH , ROR , RNH2
♦♦♦• Solvent:
Polar Aprotic (i.e. no OH) is best.
For example dimethylsulfoxide ( CH3 ( HCON(CH3)2 ), acetonitrile ( CH3
Protic solvents (e.g. H2 but can be used in some case are NEVER Substrates for SN2 reactions
Leaving Groups on double-bonded carbons are never replaced by SN2 reactions SOCH3 ), dimethylformamide CN ). O or ROH) deactivate nucleophile by hydrogen bonding
( for mechanism of sn1 see attached file 2)
♦♦♦• Reaction is:
Non-stereospecific (attack by nucleophile occurs from both sides)
Non-concerted - has carbocation intermediate
Unimolecular - rate depends on concentration of only the substrate
♦♦♦• Substrate:
Best if tertiary or conjugated (benzylic or allylic) carbocation can be formed as leaving group departs
never primary
♦♦♦• Nucleophile:
Best if more reactive (i.e. more anionic or more basic)
♦♦♦• Leaving Group: Same as SN2
best if more stable (i.e. can support negative charge well)
Examples: TsO- (very good) > I- > Br- > Cl- > F- (poor)
However, tertiary or allylic ROH or ROR' can be reactive under strongly acidic conditions to replace OH or OR
♦♦♦• Solvent:
Same as SN2
Polar Aprotic (i.e. no OH) is best
Examples: dimethylsulfoxide ( CH3 ( HCON(CH3)2 ), acetonitrile ( CH3
Protic solvents (e.g. H2
SOCH3 ), dimethylformamide CN ).
O or ROH) deactivate but can be used in some cases
Attachments:
Similar questions