why do we add aluminium sulphate and chlorine in water treatment plant
Answers
Answered by
11
because they help in cleaning the colour and the odour which comes from the sewage water
Answered by
3
Coagulation and flocculation are an essential part of drinking water treatment as well as wastewater treatment. This article provides an overview of the processes and looks at the latest thinking. Material for this article was largely taken from reference1.
Coagulation and flocculation are essential processes in various disciplines. In potable water treatment, clarification of water using coagulating agents has been practiced from ancient times. As early as 2000 BC the Egyptians used almonds smeared around vessels to clarify river water. The use of alum as a coagulant by the Romans was mentioned in around 77 AD. By 1757, alum was being used for coagulation in municipal water treatment in England.
In modern water treatment, coagulation and flocculation are still essential components of the overall suite of treatment processes – understandably, because since 1989 the regulatory limit in the US for treated water turbidity has progressively reduced from 1.0 NTU in 1989 to 0.3 NTU today. Many water utilities are committed to consistently producing treated water turbidities of less than 0.1 NTU to guard against pathogen contamination.
Coagulation is also important in several wastewater treatment operations. A common example is chemical phosphorus removal and another, in overloaded wastewatertreatment plants, is the practice of chemically enhancing primary treatment to reduce suspended solids and organic loads from primary clarifiers.
The Coagulants
The commonly used metal coagulants fall into two general categories: those based on aluminum and those based on iron. The aluminum coagulants include aluminum sulfate, aluminum chloride and sodium aluminate. The iron coagulants include ferric sulfate, ferrous sulfate, ferric chloride and ferric chloride sulfate. Other chemicals used as coagulants include hydrated lime and magnesium carbonate.
The effectiveness of aluminum and iron coagulants arises principally from their ability to form multi-charged polynuclear complexes with enhanced adsorptioncharacteristics. The nature of the complexes formed may be controlled by the pH of the system.
When metal coagulants are added to water the metal ions (Al and Fe) hydrolyze rapidly but in a somewhat uncontrolled manner, forming a series of metal hydrolysis species. The efficiency of rapid mixing, the pH, and the coagulant dosage determine which hydrolysis species is effective for treatment.
There has been considerable development of pre-hydrolyzed inorganic coagulants, based on both aluminum and iron to produce the correct hydrolysis species regardless of the process conditions during treatment. These include aluminum chlorohydrate, polyaluminum chloride, polyaluminum sulfate chloride, polyaluminum silicate chloride and forms of polyaluminum chloride with organic polymers. Iron forms include polyferric sulfate and ferric salts with polymers. There are also polymerized aluminum-iron blends.
The principal advantages of pre-polymerized inorganic coagulants are that they are able to function efficiently over wide ranges of pH and raw water temperatures. They are less sensitive to low water temperatures; lower dosages are required to achieve water treatment goals; less chemical residuals are produced; and lower chloride or sulfate residuals are produced, resulting in lower final water TDS. They also produce lower metal residuals.
Pre-polymerized inorganic coagulants are prepared with varying basicity ratios, base concentrations, base addition rates, initial metal concentrations, ageing time, and ageing temperature. Because of the highly specific nature of these products, the best formulation for a particular water is case specific, and needs to be determined by jar testing. For example, in some applications alum may outperform some of the polyaluminum chloride formulations1.
PoIymers are a large range of natural or synthetic, water soluble, macromolecular compounds that have the ability to destabilize or enhance flocculation of the constituents of a body of water.
Natural polymers have long been used as flocculants. For example, Sanskrit literature from around 2000 BC mentions the use of crushed nuts from the Nirmali tree (Strychnos potatorum) for clarifying water – a practice still alive today in parts of Tamil Nadu, where the plant is known as Therran and cultivated also for its medicinal properties.
In some cases, the removal of lower weight organics has been improved by supplementing treatment with metal coagulants with powdered activated carbon (PAC). In one case with raw water TOC of 2.4 mg/l, a combination of an alum-polymer blend coagulant at 25 mg/l with PAC at 10 mg/l was optimal to achieve a 39-percent TOC reduction.
In another case, a water with a low humic content and low SUVA (1.43 l/mg.m) was treated with 65 mg/l FeCl3 and 23 mg/l PAC. Fifty-six percent of the TOC was non-humic and 46-percent of the TOC had molecular weights less than 1,000.
Hope it helps you
........
Coagulation and flocculation are essential processes in various disciplines. In potable water treatment, clarification of water using coagulating agents has been practiced from ancient times. As early as 2000 BC the Egyptians used almonds smeared around vessels to clarify river water. The use of alum as a coagulant by the Romans was mentioned in around 77 AD. By 1757, alum was being used for coagulation in municipal water treatment in England.
In modern water treatment, coagulation and flocculation are still essential components of the overall suite of treatment processes – understandably, because since 1989 the regulatory limit in the US for treated water turbidity has progressively reduced from 1.0 NTU in 1989 to 0.3 NTU today. Many water utilities are committed to consistently producing treated water turbidities of less than 0.1 NTU to guard against pathogen contamination.
Coagulation is also important in several wastewater treatment operations. A common example is chemical phosphorus removal and another, in overloaded wastewatertreatment plants, is the practice of chemically enhancing primary treatment to reduce suspended solids and organic loads from primary clarifiers.
The Coagulants
The commonly used metal coagulants fall into two general categories: those based on aluminum and those based on iron. The aluminum coagulants include aluminum sulfate, aluminum chloride and sodium aluminate. The iron coagulants include ferric sulfate, ferrous sulfate, ferric chloride and ferric chloride sulfate. Other chemicals used as coagulants include hydrated lime and magnesium carbonate.
The effectiveness of aluminum and iron coagulants arises principally from their ability to form multi-charged polynuclear complexes with enhanced adsorptioncharacteristics. The nature of the complexes formed may be controlled by the pH of the system.
When metal coagulants are added to water the metal ions (Al and Fe) hydrolyze rapidly but in a somewhat uncontrolled manner, forming a series of metal hydrolysis species. The efficiency of rapid mixing, the pH, and the coagulant dosage determine which hydrolysis species is effective for treatment.
There has been considerable development of pre-hydrolyzed inorganic coagulants, based on both aluminum and iron to produce the correct hydrolysis species regardless of the process conditions during treatment. These include aluminum chlorohydrate, polyaluminum chloride, polyaluminum sulfate chloride, polyaluminum silicate chloride and forms of polyaluminum chloride with organic polymers. Iron forms include polyferric sulfate and ferric salts with polymers. There are also polymerized aluminum-iron blends.
The principal advantages of pre-polymerized inorganic coagulants are that they are able to function efficiently over wide ranges of pH and raw water temperatures. They are less sensitive to low water temperatures; lower dosages are required to achieve water treatment goals; less chemical residuals are produced; and lower chloride or sulfate residuals are produced, resulting in lower final water TDS. They also produce lower metal residuals.
Pre-polymerized inorganic coagulants are prepared with varying basicity ratios, base concentrations, base addition rates, initial metal concentrations, ageing time, and ageing temperature. Because of the highly specific nature of these products, the best formulation for a particular water is case specific, and needs to be determined by jar testing. For example, in some applications alum may outperform some of the polyaluminum chloride formulations1.
PoIymers are a large range of natural or synthetic, water soluble, macromolecular compounds that have the ability to destabilize or enhance flocculation of the constituents of a body of water.
Natural polymers have long been used as flocculants. For example, Sanskrit literature from around 2000 BC mentions the use of crushed nuts from the Nirmali tree (Strychnos potatorum) for clarifying water – a practice still alive today in parts of Tamil Nadu, where the plant is known as Therran and cultivated also for its medicinal properties.
In some cases, the removal of lower weight organics has been improved by supplementing treatment with metal coagulants with powdered activated carbon (PAC). In one case with raw water TOC of 2.4 mg/l, a combination of an alum-polymer blend coagulant at 25 mg/l with PAC at 10 mg/l was optimal to achieve a 39-percent TOC reduction.
In another case, a water with a low humic content and low SUVA (1.43 l/mg.m) was treated with 65 mg/l FeCl3 and 23 mg/l PAC. Fifty-six percent of the TOC was non-humic and 46-percent of the TOC had molecular weights less than 1,000.
Hope it helps you
........
Similar questions