Computer Science, asked by rupamborthakur9187, 1 year ago

Why in formal definition of limit function is defined in open interval?

Answers

Answered by singhmahesh140
0
a) For a∈Ra∈R and a function ff we write limx→af(x)=Llimx→af(x)=L provided limx→aSf(x)=Llimx→aSf(x)=Lfor some set S=J∖{a}S=J∖{a} where JJ is an open interval containing aa. limx→af(x)limx→af(x) is called the [two-sided] limit of ff at aa. Note ffneed not be defined at aa and, even if ff is defined at aa, the value f(a)f(a) need not equal limx→af(x)limx→af(x). In fact, f(a)=limx→af(x)f(a)=limx→af(x) if and only if ff is defined at aa and ff is continuous at aa.
(b) For a∈Ra∈R and a function ff we write limx→a+f(x)=Llimx→a+f(x)=L provided limx→aSf(x)=Llimx→aSf(x)=Lfor some open interval S=(a,b)S=(a,b).limx→a+f(x)limx→a+f(x) is the right-hand limit of ff at aa. Again ff need not be defined at a--_----------------------
i hope it will help you
Answered by sairam1919
0

Answer:

\LARGE{\underline{\underline{\bf{AnsweR \:  : -}}}}

  • The reason that open interval may be preferred is that the limit requires f to be defined on a topological neighbourhood of ∞. A neighbourhood of ∞ is a set that contains an open set containing ∞ and the basic open sets are open intervals
Similar questions