Math, asked by pavitrapai1006, 9 months ago

why is 1-tanA divided by 1+tanA =(tanπ/4-A)​

Answers

Answered by kuldeep20941
2

Step-by-step explanation:

=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=

See The Attachment My Friend....

And Clear Your Doubt...

=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=

Attachments:
Answered by Anonymous
1

To Prove :

 \sf Tan( \frac{\pi}{4}  - A) =  \frac{1 -Tan(A) }{1 +Tan(A) }

Proof :

\Rightarrow \sf Tan( \frac{\pi}{4}  - A) =  \frac{Tan( \frac{\pi}{4}) \:  - \:  Tan(A )}{1  +  Tan( \frac{\pi}{4})Tan(A) }  \\  \\ \sf Because \: , \:  \:  Tan(x - y) =  \frac{Tan(x) - Tan(y)}{1 + Tan(x)Tan(y)} \\  \\ \Rightarrow \sf Tan( \frac{\pi}{4}  - A) =  \frac{1 -Tan(A) }{1 +Tan(A) }

Hence proved

Extra Information :

\sf  \star \:  \: Tan(x - y) =  \frac{Tan(x) - Tan(y)}{1 + Tan(x)Tan(y)}  \\  \\ \star \:  \: </p><p>\sf  Tan(x + y) =  \frac{Tan(x) +Tan(y)}{1 - Tan(x)Tan(y)}</p><p>\\  \\ \star \:  \: </p><p> \sf Tan( \frac{\pi}{4}  + A) =  \frac{1 +Tan(A) }{1 -Tan(A) }

Similar questions