Math, asked by Anonymous, 1 day ago

Why is cos(-x) = cos(x) but sin (-x) = -sin(x)?

Answers

Answered by user0888
10

Let \rm{P(x,\ y)} be the coordinate on a plane and let the angle be \theta.

Consider reflecting on the x-axis.

Then the coordinate of the image and the angle are \rm{P'(x,\ -y)} and -\theta.

\;

\boxed{\rm{\sin \theta=\dfrac{y}{r}}}

\;

\rm{\sin (-\theta )=-\dfrac{y}{r}}

\;

\therefore \sin (-\theta )=-\sin \theta

\;

\boxed{\rm{\cos \theta=\dfrac{x}{r}}}

\;

\rm{\cos (-\theta )=\dfrac{x}{r}}

\;

\therefore \cos (-\theta )=\cos \theta

\;

\boxed{\rm{\tan \theta =\dfrac{y}{x}}}

\;

\rm{\tan (-\theta )=-\dfrac{y}{x}}

\;

\therefore \tan (-\theta )=-\tan \theta

\;

Hence proven.

\;

\Large\textrm{Learn More}

\;

\textbf{- Meaning of Trigonometric Functions}

\boxed{\rm{\sin \theta=\dfrac{y}{r}}}

\;

\boxed{\rm{\cos \theta=\dfrac{x}{r}}}

\;

\boxed{\rm{\tan \theta=\dfrac{y}{x}}}

\;

\textbf{- Periodicity}

\boxed{\rm{\sin(2\pi+\theta)=\sin\theta}}

\;

\boxed{\rm{\cos(2\pi+\theta)=\cos\theta}}

\;

\boxed{\rm{\tan(\pi+\theta)=\tan\theta}}

\;

\textbf{- Changing Signs on Quadrants (A.S.T.C.)}

\boxed{\rm{1st\ quadrant:\ x>0,\ y>0}}

\rm{\therefore \sin \theta >0,\ \cos \theta >0,\ \tan \theta >0\ \textbf{(All)}}

\;

\boxed{\rm{2nd\ quadrant:\ x<0,\ y>0}}

\rm{\therefore \sin \theta >0,\ \cos \theta <0,\ \tan \theta <0\ \textbf{(Sine)}}

\;

\boxed{\rm{3rd\ quadrant:\ x<0,\ y<0}}

\rm{\therefore \sin \theta <0,\ \cos \theta <0,\ \tan \theta >0\ \textbf{(Tangent)}}

\;

\boxed{\rm{4th\ quadrant:\ x>0,\ y<0}}

\rm{\therefore \sin \theta <0,\ \cos \theta >0,\ \tan \theta <0\ \textbf{(Cosine)}}

\;

\textbf{- Reciprocal Trigonometric Functions}

\;

\boxed{\rm{\sin\theta\csc\theta=1}}

\;

\boxed{\rm{\cos\theta\sec\theta=1}}

\;

\boxed{\rm{\tan\theta\cot\theta=1}}

\;

\textbf{- Consequencial Formula}

\rm{Angle:\ \dfrac{n}{2}\pi\pm\theta}

\;

Consider \theta as an acute angle.

The sign changes depend on the sign of the previous function.

\;

\textrm{n is odd}

\;

\boxed{\rm{\sin\to\cos,\ \cos\to\sin,\ \tan\to\cot}}

\;

\textrm{n is even}

\;

\boxed{\rm{\sin\to\sin,\ \cos\to\cos,\ \tan\to\tan}}

Similar questions