Science, asked by AnIntellectGuess, 7 months ago

Why is it necessary for the universe to be non-uniform at far points according to the physicists? Like, if the universe inflated from the same point then why should it be different in random points?

Please answer.

Inappropriate answers might be reported.​

Answers

Answered by UddiptaGhosh
1

Answer:

The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time.[1] It is an intrinsic expansion whereby the scale of space itself changes. The universe does not expand "into" anything and does not require space to exist "outside" it. Technically, neither space nor objects in space move. Instead it is the metric governing the size and geometry of spacetime itself that changes in scale. Although light and objects within spacetime cannot travel faster than the speed of light, this limitation does not restrict the metric itself. To an observer it appears that space is expanding and all but the nearest galaxies are receding into the distance.

During the inflationary epoch about 10−32 of a second after the Big Bang, the universe suddenly expanded, and its volume increased by a factor of at least 1078 (an expansion of distance by a factor of at least 1026 in each of the three dimensions), equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light years (about 1017 m or 62 trillion miles) long. A much slower and gradual expansion of space continued after this, until at around 9.8 billion years after the Big Bang (4 billion years ago) it began to gradually expand more quickly, and is still doing so.

The metric expansion of space is of a kind completely different from the expansions and explosions seen in daily life. It also seems to be a property of the universe as a whole rather than a phenomenon that applies just to one part of the universe or can be observed from "outside" of it.

Metric expansion is a key feature of Big Bang cosmology, is modeled mathematically with the Friedmann-Lemaître-Robertson-Walker metric and is a generic property of the universe we inhabit. However, the model is valid only on large scales (roughly the scale of galaxy clusters and above), because gravitational attraction binds matter together strongly enough that metric expansion cannot be observed on a smaller scale at this time. As such, the only galaxies receding from one another as a result of metric expansion are those separated by cosmologically relevant scales larger than the length scales associated with the gravitational collapse that are possible in the age of the universe given the matter density and average expansion rate.[clarification needed]

Physicists have postulated the existence of dark energy, appearing as a cosmological constant in the simplest gravitational models, as a way to explain the acceleration. According to the simplest extrapolation of the currently-favored cosmological model, the Lambda-CDM model, this acceleration becomes more dominant into the future. In June 2016, NASA and ESA scientists reported that the universe was found to be expanding 5% to 9% faster than thought earlier, based on studies using the Hubble Space Telescope.[2]

While special relativity prohibits objects from moving faster than light with respect to a local reference frame where spacetime can be treated as flat and unchanging, it does not apply to situations where spacetime curvature or evolution in time become important. These situations are described by general relativity, which allows the separation between two distant objects to increase faster than the speed of light, although the definition of "separation" is different from that used in an inertial frame. This can be seen when observing distant galaxies more than the Hubble radius away from us (approximately 4.5 gigaparsecs or 14.7 billion light-years); these galaxies have a recession speed that is faster than the speed of light. Light that is emitted today from galaxies beyond the cosmological event horizon, about 5 gigaparsecs or 16 billion light-years, will never reach us, although we can still see the light that these galaxies emitted in the past. Because of the high rate of expansion, it is also possible for a distance between two objects to be greater than the value calculated by multiplying the speed of light by the age of the universe. These details are a frequent source of confusion among amateurs and even professional physicists.[3] Due to the non-intuitive nature of the subject and what has been described by some as "careless" choices of wording, certain descriptions of the metric expansion of space and the misconceptions to which such descriptions can lead are an ongoing subject of discussion within the fields of education and communication of scientific concepts

read this..

hope it help you

Similar questions