Why is knowledge about the carbon cycle important for helping scientists understand global climate
change?
Answers
Answered by
1
Many of the questions scientists still need to answer about the carbon cycle revolve around how it is changing. The atmosphere now contains more carbon than at any time in at least two million years. Each reservoir of the cycle will change as this carbon makes its way through the cycle.
What will those changes look like? What will happen to plants as temperatures increase and climate changes? Will they remove more carbon from the atmosphere than they put back? Will they become less productive? How much extra carbon will melting permafrost put into the atmosphere, and how much will that amplify warming? Will ocean circulation or warming change the rate at which the ocean takes up carbon? Will ocean life become less productive? How much will the ocean acidify, and what effects will that have?

Time series of satellite data, like the imagery available from the Landsat satellites, allow scientists to monitor changes in forest cover. Deforestation can release carbon dioxide into the atmosphere, while forest regrowth removes CO2. This pair of false-color images shows clear cutting and forest regrowth between 1984 and 2010 in Washington State, northeast of Mount Rainier. Dark green corresponds to mature forests, red indicates bare ground or dead plant material (freshly cut areas), and light green indicates relatively new growth. (NASA image by Robert Simmon, using Landsat data from the USGS Global Visualization Viewer.)
NASA’s role in answering these questions is to provide global satellite observations and related field observations. As of early 2011, two types of satellite instruments were collecting information relevant to the carbon cycle.
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, flying on NASA’s Terra and Aqua satellites, measure the amount of carbon plants and phytoplankton turn into matter as they grow, a measurement called net primary productivity. The MODIS sensors also measure how many fires occur and where they burn.
Two Landsat satellites provide a detailed view of ocean reefs, what is growing on land, and how land cover is changing. It is possible to see the growth of a city or a transformation from forest to farm. This information is crucial because land use accounts for one-third of all human carbon emissions.
Future NASA satellites will continue these observations, and also measure carbon dioxide and methane in the atmosphere and vegetation height and structure.
All of these measurements will help us see how the global carbon cycle is changing through time. They will help us gauge the impact we are having on the carbon cycle by releasing carbon into the atmosphere or finding ways to store it elsewhere. They will show us how our changing climate is altering the carbon cycle, and how the changing carbon cycle is altering our climate.
Most of us, however, will observe changes in the carbon cycle in a more personal way. For us, the carbon cycle is the food we eat, the electricity in our homes, the gas in our cars, and the weather over our heads. We are a part of the carbon cycle, and so our decisions about how we live ripple across the cycle. Likewise, changes in the carbon cycle will impact the way we live. As each of us come to understand our role in the carbon cycle, the knowledge empowers us to control our personal impact and to understand the changes we are seeing in the world around us.
What will those changes look like? What will happen to plants as temperatures increase and climate changes? Will they remove more carbon from the atmosphere than they put back? Will they become less productive? How much extra carbon will melting permafrost put into the atmosphere, and how much will that amplify warming? Will ocean circulation or warming change the rate at which the ocean takes up carbon? Will ocean life become less productive? How much will the ocean acidify, and what effects will that have?

Time series of satellite data, like the imagery available from the Landsat satellites, allow scientists to monitor changes in forest cover. Deforestation can release carbon dioxide into the atmosphere, while forest regrowth removes CO2. This pair of false-color images shows clear cutting and forest regrowth between 1984 and 2010 in Washington State, northeast of Mount Rainier. Dark green corresponds to mature forests, red indicates bare ground or dead plant material (freshly cut areas), and light green indicates relatively new growth. (NASA image by Robert Simmon, using Landsat data from the USGS Global Visualization Viewer.)
NASA’s role in answering these questions is to provide global satellite observations and related field observations. As of early 2011, two types of satellite instruments were collecting information relevant to the carbon cycle.
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, flying on NASA’s Terra and Aqua satellites, measure the amount of carbon plants and phytoplankton turn into matter as they grow, a measurement called net primary productivity. The MODIS sensors also measure how many fires occur and where they burn.
Two Landsat satellites provide a detailed view of ocean reefs, what is growing on land, and how land cover is changing. It is possible to see the growth of a city or a transformation from forest to farm. This information is crucial because land use accounts for one-third of all human carbon emissions.
Future NASA satellites will continue these observations, and also measure carbon dioxide and methane in the atmosphere and vegetation height and structure.
All of these measurements will help us see how the global carbon cycle is changing through time. They will help us gauge the impact we are having on the carbon cycle by releasing carbon into the atmosphere or finding ways to store it elsewhere. They will show us how our changing climate is altering the carbon cycle, and how the changing carbon cycle is altering our climate.
Most of us, however, will observe changes in the carbon cycle in a more personal way. For us, the carbon cycle is the food we eat, the electricity in our homes, the gas in our cars, and the weather over our heads. We are a part of the carbon cycle, and so our decisions about how we live ripple across the cycle. Likewise, changes in the carbon cycle will impact the way we live. As each of us come to understand our role in the carbon cycle, the knowledge empowers us to control our personal impact and to understand the changes we are seeing in the world around us.
Answered by
0
carbon cycle is important for all scientist bcoz it shows carbon properties
Similar questions