Math, asked by ritob2705, 1 year ago

why is \frac{d}{dx} sinx = cosx ?

Answers

Answered by Anonymous
1

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Assumption

y = sinx

Also,

y + δy = sin(x + δx)

Hence,

\tt{\rightarrow\dfrac{\delta y}{\delta x}=\dfrac{sin(x+\delta x)-sinx}{\delta x}}

Therefore,

\tt{\rightarrow\dfrac{dy}{dx}=\lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}}

\tt{\rightarrow \lim_{\delta x \to 0}\dfrac{sin(x+\delta x)-sinx}{\delta x}}

{\boxed{\sf\:{sinC-sinD=2cos(\dfrac{C+D}{2})sin(\dfrac{C-D}{2})}}}

\tt{\rightarrow \lim_{\delta x \to 0}\dfrac{2cos(x+\delta x/2)sin(\delta x/2)}{\delta x}}

\tt{\rightarrow lim_{\delta x \to 0}cos(x+\dfrac{\delta x}{2})\times lim_{\dfrac{\delta x}{2} \to 0}\dfrac{sin(\delta x/2)}{\delta x/2}}

= cosx × 1

= cosx

Therefore,

\tt{\rightarrow\dfrac{dy}{dx}=cosx}

That is,

\tt{\rightarrow\dfrac{d}{dx}(sinx)=cosx}

Similar questions