Physics, asked by Kcom3458, 1 year ago

Why is the line width of magnetic resonance proportional to the magnetic field?

Answers

Answered by arbabali12
0
Magnetic resonance, absorption or emission of electromagnetic radiation by electrons or atomic nuclei in response to the application of certain magnetic fields. The principles of magnetic resonance are applied in the laboratory to analyze the atomic and nuclear properties of matter.

Electron-spin resonance (ESR) was first observed in 1944 by a Soviet physicist, Y.K. Zavoysky, in experiments on salts of the iron group of elements. ESR has made possible the study of such phenomena as the structural defects that give certain crystals their colour, the formation and destruction of free radicals in liquid and solid samples, the behaviour of free or conduction electrons in metals, and the properties of metastable states (excited states that are long-lived because energy transfer from them by radiation does not occur) in molecular crystals.

Answered by Akash7766
2
\mathbb{\blue{\huge{Heya\:mate}}}

\boxed{Here\:is\:your\:@nswer}

━━━━━━━━━━━━━━━━━━━

\mathfrak{Q.}Why is the line width of magnetic resonance proportional to the magnetic field?

\mathfrak{Ans.}The linewidths and spin-lattice relaxation times of the 13C-n.m.r. signal at 109.7 p.p.m. due to the thiocyanate carbon of intact [cyanato-13C]cyanylated-beta-lactoglobulin-B have been determined at magnetic field strengths of 1.88, 6.34 and 11.74 T as well as the spin-lattice relaxation times of its backbone alpha-carbon atoms. The linewidths were directly proportional to the square of the magnetic field strength and we conclude that, at magnetic field strengths of 6.34 T or above, more than 70% of the linewidth will be determined by chemical-shift anisotropy. We estimate that the spin-lattice relaxation time resulting from the chemical-shift anisotropy of the thiocyanate carbon is 1.52 +/- 0.1 s and we conclude that for magnetic field strengths of 6.34 T and above the observed spin-lattice relaxation time of the thiocyanate carbon will be essentially independent of magnetic field strength. Using the rigid-rotor model we obtain estimates of the rotational correlation time of [cyanato-13C]cyanylated-beta-lactoglobulin-B and of the chemical-shift anisotropy shielding tensor of its thiocyanate carbon. We have calculated the linewidths and spin-lattice relaxation times of thiocyanate carbons at magnetic field strengths of 1.88-14.1 T in proteins with M(r) values in the range 10,000-400,000. The effects of magnetic field strength on the resolution and signal-to-noise ratios of the signals due to thiocyanate carbons attached to proteins of M(r) greater than 10,000 are discussed.

━━━━━━━━━━━━━━━━━━━

\mathbb{\huge{\green{Hope\:it\:helps!!}}}
Similar questions