Physics, asked by affu786, 1 year ago

why quarks are in set of 3 in proton and neutron​

Answers

Answered by arkit50
1

A quark is a tiny particle which makes up protons and neutrons. Atoms are made of protons,neutrons and electrons. It was once thought that all three of those were fundamental particles, which cannot be broken up into anything smaller. ... Neutrons and protonsare made up of quarks, which are held together by Gluons.

The positively-charged protons repel each other and aren't electrically attracted or repelled to the neutral neutrons, so you may wonder how the atomic nucleus sticks together and why protons don't fly off. The reason protons and neutronsstick together is the strong force.

Answered by LoyelKashyap
0

Hey mate!

I am telling myself....I have copied the answer from another site.

--------------------------------------------------------

If different types of quarks have different masses, then why are protons and neutrons said to have the same mass, when they have different compositions of quarks?

Protons and neutrons do not have the same mass. Their masses are quite close, but they are noticeably different. For some purposes it is okay to equate the neutron and proton mass, but it's just an approximation. Also, neutrons decay into a proton, an electron and an antineutrino. For that to happen the neutron must be heavier than the proton. Because the neutron is only a little heavier than the proton the decay takes a long time. For isolated, or "free" neutrons, the time is ~16.7 minutes. This is the mean, or average, lifetime for a neutron to turn into a proton. When neutrons and protons are mixed together to form a nucleus the neutrons do not decay as long as they stay inside the nucleus. We would not be here nor would the rest of the universe if neutrons could decay just as easily inside a nucleus as they could outside! This is the case because the binding energy of a proton or neutron in a nucleus is about 8 MeV (Million Electron Volts) on average and that's bigger than the proton-neutron mass difference. This makes the neutron stable inside a nucleus and therefore the universe is saved from a very early end.

The proton has a mass in energy units of 938.256 MeV while the neutron is 939.550 MeV. Now, how about the quarks? The proton and neutron are each made from three quarks. A proton is made up of two Up quarks and a Down quark while a neutron is made from two Down quarks and an Up quark. If protons and neutrons only had quarks in them it would be easy algebra to get the quark masses. However, there is a family of lighter particles called Pions that are made from pairs of quarks. They are made from pairs of Up and Down quarks. They have masses that are a lot smaller than two thirds of the proton or neutron mass so determining the masses of the quarks isn't easy!

Pions have masses of 139.6 MeV for Pi+ or Pi- and 134.975 MeV for the Pi0 or Pi zero (neutral). One of the reasons that we can't just use simple algebra to get the quark masses is that the quarks are bound so tightly together. They are so tightly bound that if you try to pull them apart you just make more particles and never (not yet anyway) get a loose quark. The quarks lose much of their mass in binding energy. That is, the composite particle weighs less than the separate quarks would. We can estimate the masses of the quarks from the mass differences of the elementary particles, but it's just a rough estimate. For example, Kaons are made from an Up (or Down) quark and a Strange quark. Kaons have masses of 497 MeV so the mass difference between a Strange quark and an Up (or Down) is approximately the same as the Kaon-Pion mass difference (497 - 139 = 358). We also have a particle called a Lambda which is made from three quarks - one of which is Strange, and the Sigma, which also has one Strange quark. The Sigma mass minus the proton mass is 251 MeV while the Lambda mass minus the proton mass is 177 MeV. These simple differences tell us that the Strange quark is heavier than the Up (or Down) by about 358 MeV (or 251 or 177). As I said, this is only approximate. This arithmetic is only useful if you are comfortable with 358 ≈ 251 ≈ 177. For some purposes the crude equality above is actually useful and guides our understanding. We could even start to form a simple picture of what's going on from all this. We can also estimate the quark masses from the lightest mesons that are made up of pairs of quarks. There is a meson called the Phi that is composed of two Strange quarks. It has a mass of 1019 MeV. So a Strange quark is about ~510 MeV. The next one up is called the J/Psi particle and its 3,100 MeV and is made from a pair of Charmed quarks. These guys have to be ~1500 MeV each. Higher still is the Upsilon at about 9,600 MeV and its a Bottom quark pair so the Bottom quark is maybe 4,800 MeV! Recently, evidence for the Top quark was found and its approximate mass is 91,000 MeV! We would know that the Up quark has approximately the same mass as the Down quark because the neutron-proton mass difference is small and because the pion mass differences are all small. We could further suppose that the Strange quark could be 358 MeV heavier than the Up or the Down quarks based on the Kaon-Pion mass difference. We could also set limits on the Up (Down) mass. The Up (Down) quark could be as heavy as the proton mass divided by three. That would make the Up (Down) around 310 MeV on the high end. So where are we with the quark masses by this crude method:

Up ≈ Down ≈ 300 MeV

Strange ≈ 510 MeV

Charmed ≈ 1,500 MeV

Bottom ≈ 4,800 MeV

Top ≈ 91,000 MeV

--------------------------------------------------------

Don't forget to mark my answer as brainliest if it helped you...

Similar questions