Math, asked by FacebookGst, 1 year ago

Why Sin²¤ + Cos²¤ = 1​

Answers

Answered by Anonymous
28

Here Is Your Ans

_____

BY Pythagoras Theorem

H² = P² + B² ----- 1

Divide H² In Equation 1

  =  > \frac{ {h}^{2} }{ {h}^{2} }  =  \frac{ {p}^{2} }{ {h}^{2} }  +  \frac{ {b}^{2} }{ {h}^{2} }  \\  \\  =  > 1 = (  { \frac{p}{h} )}^{2} +   {( \frac{b}{h} )}^{2}  \\  \\

= > 1 = Sin²¤ + Cos²¤

_____

 <marquee > hope it helps u

Answered by Anonymous
9

\underline{\underline{\mathfrak{\green{Answer:-}}}}

Sin²Φ + cos²Φ = 1

\underline{\underline{\mathfrak{\green{Explanation:-}}}}

\underline{\pink{To \: Prove}}

sin²Φ + cos²Φ = 1

\underline{\pink{ </strong><strong>Proof</strong><strong>}}

let us consider LHS,

= sin²Φ + cos²Φ

\boxed{\red{sinΦ = \dfrac{opp. side}{Hypoteneuse} }}

\boxed{\red{cosΦ = \dfrac{Adj.side}{Hypoteneuse}}}

\\

On putting the values,

= {(\dfrac{Opp.side}{Hyp})}^{2} +{(\dfrac{Adj.side}{Hyp})}^{2}

= \dfrac{{(Opp.side)}^{2}}{{(Hyp)}^{2}}+\dfrac{{(Adj.side)}^{2}}{{(Hyp)}^{2}}

= \dfrac{{(opp.side)}^{2}+{(Adj.side)}^{2}}{({Hyp})^{2}}

\\  \\

From pythagoras theorem,

(opp.side)²+(Adj.side)²= (Hyp)²

\\

= \dfrac{{(Hyp)}^{2}}{({Hyp})^{2}}

= 1

Therefore, LHS = 1

\\

RHS = 1

\\

Here,

LHS = RHS

\blue{HENCE \: PROVED}

Attachments:

mysticd: Attach image of a right angled triangle
Anonymous: ok.. bro
Anonymous: edit option please
Anonymous: Done bro
Anonymous: Attached
Similar questions