Math, asked by pragyameshram15, 5 hours ago

why x^2 - 3 = (x - √3) (x +√3)​

Attachments:

Answers

Answered by 12thpáìn
3

why x² - 3 = (x - √3) (x +√3)

Step by step explanation :

 \sf{ {x}^{2} -  3 =  {x}^{2} -  \sqrt{3}  \times   \sqrt{3}    }

 \sf{ {x}^{2} -  3 =  {x}^{2} -  {(\sqrt{3}   )}^{1 + 1} }

 \sf{ {x}^{2} -  3 =  {x}^{2} -  {(\sqrt{3}   )}^{2} }

  • By Using identity, A²-B²=(A+B)(A-B)

 \sf{ {x}^{2} -  3 =  (x +  \sqrt{3}  )(x -  \sqrt{3}) }

Zeros of the polynomial is √3 and -√3.

let Alpha be √3 and beta be -√3

Sum of zeros = alpha + beta = -b/a

√3-√3 = 0/3

0 = 0

Product of zeros = Alpha × beta = c/a

√3 × -√3 = -3 /1

-3 / -3

Similar questions