Math, asked by princessRozalin, 11 months ago

will be a perfect square -
b) For what value of 't',
 {u}^{2} – tu + 1/4
i) 4
ii)8
iii)1
iv)1/2​

Answers

Answered by Cosmique
2

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

\underline{\huge{\frak{\red{question}}}}

For what value of 't',

\sf{ {u}^{2}  - tu +  \frac{1}{4}}

will be a perfect square,

Options

(i) 4

(ii) 8

(iii) 1 ✔✔

(iv) 1/2

\underline{\huge{\frak{\red{solution}}}}

If

\sf \:  {u}^{2}  - tu +  \frac{1}{4}

will be a perfect square then,

it will have two equal and real roots

such, that

\boxed{ \sf \: {b}^{2}  - 4ac = 0}

In the given quadratic polynomial in the 'u' variable

a = 1 ; b = -t ; c = 1 /4

so, putting values in

\sf \:  {b}^{2}  - 4ac = 0 \\  \\ \sf \:  {( - t)}^{2}  - 4(1)( \frac{1}{4} ) = 0 \\  \\ \sf \:  {t}^{2}  - 1 = 0 \\  \\ \sf \:  {t}^{2}  = 1 \\  \\\boxed{ \sf \: t = 1}

Hence the value of t will be 1 to make

u^2 - tu + 1/4 a perfect square.

\underline{\huge{\red{\frak{  correct \: answer}}}}

So,

The correct answer to this question will be 1.

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

Similar questions