Math, asked by karunadevkota9988, 1 day ago

Will mark brainlest
help​

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tan(A)=\dfrac{y}{x}

Now,

\tt{\dfrac{x\,cos(A)+y\,sin(A)}{x\,cos(A)-y\,sin(A)}}

taking cos(A) in common,

\tt{=\dfrac{cos(A)\left\{x+y\dfrac{sin(A)}{cos(A)}\right\}}{cos(A)\left\{x-y\dfrac{sin(A)}{cos(A)}\right\}}}

cos(A) will be canceled out,

\tt{=\dfrac{x+y\dfrac{sin(A)}{cos(A)}}{x-y\dfrac{sin(A)}{cos(A)}}}

\tt{=\dfrac{x+y\,tan(A)}{x-y\,tan(A)}}

\tt{=\dfrac{x+y\cdot\dfrac{y}{x}}{x-y\cdot\dfrac{y}{x}}}

\tt{=\dfrac{x+\dfrac{{y}^{2}}{x}}{x-\dfrac{{y}^{2}}{x}}}

\tt{=\dfrac{\dfrac{{x}^{2}+{y}^{2}}{x}}{\dfrac{{x}^{2}-{y}^{2}}{x}}}

\tt{=\dfrac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}}

Answered by user0888
9

Given that,

\rm \tan A=\dfrac{y}{x}

\;

We have,

\rm\dfrac{x\cos A+y\sin A}{x\cos A-y\sin A}

\;

\rm=\dfrac{x\cos A+y\sin A}{x\cos A-y\sin A}\times\dfrac{\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}}

\;

\rm=\dfrac{\dfrac{x\cos A}{\cos A}+\dfrac{y\sin A}{\cos A}}{\dfrac{x\cos A}{\cos A}-\dfrac{y\sin A}{\cos A}}

\;

\boxed{\rm\tan\theta=\dfrac{\sin\theta}{\cos\theta}}

\rm=\dfrac{x+y\tan A}{x-y\tan A}

\;

\rm=\dfrac{x+\dfrac{y^{2}}{x}}{x-\dfrac{y^{2}}{x}}

\;

\rm=\dfrac{x+\dfrac{y^{2}}{x}}{x-\dfrac{y^{2}}{x}}\times\dfrac{x}{x}

\;

\rm=\dfrac{x(x+\dfrac{y^{2}}{x})}{x(x-\dfrac{y^{2}}{x})}

\;

\rm=\dfrac{x^{2}+y^{2}}{x^{2}-y^{2}}

\;

\rm\therefore\dfrac{x\cos A+y\sin A}{x\cos A-y\sin A}=\dfrac{x^{2}+y^{2}}{x^{2}-y^{2}}

\;

\Large\textrm{Learn More}

\textbf{- Trigonometric Functions}

\boxed{\rm\sin\theta=\dfrac{y}{r}}

\;

\boxed{\rm\cos\theta=\dfrac{x}{r}}

\;

\boxed{\rm\tan\theta=\dfrac{y}{x}}

\;

\textbf{- Trigonometric Identities}

\boxed{\rm\sin^{2}\theta+\cos^{2}\theta=1}

\;

\boxed{\rm\tan^{2}\theta+1=\sec^{2}\theta}

\;

\boxed{\rm\tan\theta=\dfrac{\sin\theta}{\cos\theta}}

Similar questions