Math, asked by sindushriyam, 11 months ago

will mark it brainliest

Attachments:

Answers

Answered by harshit9927
1

Step-by-step explanation:

(cotA + cosecA -1) / (cotA + 1 - cosecA) = 1/(cosecA - cotA)

LHS

replace 1(in numerator) by

cosec^2A - cot^2A = 1

{cotA + cosecA - (cosec^2A - cot^2A)} / (cotA + 1 - cosecA)

{cotA + cosecA - (cosecA + cotA)(cosecA - cotA)} /

(cotA + 1 - cosecA)

take (cosecA + cotA) common from numerator

(cosecA + cotA){1 - (cosecA - cotA)} / (cotA + 1 - cosecA)

(cosecA + cotA){1 - cosecA + cotA} / (cotA + 1 - cosecA)

(1 - cosecA + cotA) will cancel out

cosecA + cotA

now rationalise

(cosecA + cotA)×(cosecA - cotA) /(cosecA - cotA)

(cosec^2A - cot^2A) / (cosecA - cotA)

we know that

cosec^2A - cot^2A = 1

hence

1/ (cosecA - cotA)

LHS = RHS

Similar questions