Chemistry, asked by ayomifavour724, 5 months ago

With a suitable diagram, explain co-ordinate covalent bounding

Answers

Answered by DARYLL11234
3

Answer:

Given :

Area of rectangular field = 24000 m².

Width of rectangular field = 120 m

⠀⠀⠀⠀

To find :

Length of wire that will be required to fence the field?

⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀

☯ Let length of field be x m.

⠀⠀⠀⠀

\begin{gathered}\bf{\dag}\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\\end{gathered}

Asweknowthat,

\begin{gathered}\star\;{\boxed{\sf{\pink{Area_{\;(rectangle)} = length \times breadth}}}}\\ \\\end{gathered}

Area

(rectangle)

=length×breadth

\begin{gathered}:\implies\sf x \times 120 = 24000\\ \\\end{gathered}

:⟹x×120=24000

\begin{gathered}:\implies\sf x = \cancel{ \dfrac{24000}{120}}\\ \\\end{gathered}

:⟹x=

120

24000

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{x = 200\;m}}}}}\;\bigstar\\ \\\end{gathered}

:⟹

x=200m

\therefore\:{\underline{\sf{Length\:of\;rectangular\;field\:is\: {\textsf{\textbf{200\;m}}}.}}}∴

Lengthofrectangularfieldis200m.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

☯ Now, Finding length of wire that will be required to fence the field.

⠀⠀⠀⠀

Length of wire required in one round = Perimeter of field

⠀⠀⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\\end{gathered}

Perimeter

(rectangle)

=2(length+breadth)

\begin{gathered}:\implies\sf Perimeter_{\;(rectangle)} = 2(200 + 120)\\ \\\end{gathered}

:⟹Perimeter

(rectangle)

=2(200+120)

\begin{gathered}:\implies\sf Perimeter_{\;(rectangle)} = 2 \times 320\\ \\\end{gathered}

:⟹Perimeter

(rectangle)

=2×320

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(rectangle)} = 640\;m}}}}}\;\bigstar\\ \\\end{gathered}

:⟹

Perimeter

(rectangle)

=640m

\therefore\:{\underline{\sf{Perimeter\:of\;rectangular\;field\:is\: {\textsf{\textbf{640\;m}}}.}}}∴

Perimeterofrectangularfieldis640m.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀

Length of wire required to fence the field in one round = 640 m

Length of wire required to fence the field in two round = 2 × 640 = 1280 m

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\:Total\:Length\:of\;wire\; required\:is\:{\textsf{\textbf{1280\;m}}}.}}}∴

Hence,TotalLengthofwirerequiredis1280m.

Explanation:

I HOPE IT HELP

Mark me as a brainleist

Similar questions