With a suitable diagram, explain co-ordinate covalent bounding
Answers
Answer:
Given :
Area of rectangular field = 24000 m².
Width of rectangular field = 120 m
⠀⠀⠀⠀
To find :
Length of wire that will be required to fence the field?
⠀⠀⠀⠀
Solution:
⠀⠀⠀⠀
☯ Let length of field be x m.
⠀⠀⠀⠀
\begin{gathered}\bf{\dag}\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\\end{gathered}
†
Asweknowthat,
\begin{gathered}\star\;{\boxed{\sf{\pink{Area_{\;(rectangle)} = length \times breadth}}}}\\ \\\end{gathered}
⋆
Area
(rectangle)
=length×breadth
\begin{gathered}:\implies\sf x \times 120 = 24000\\ \\\end{gathered}
:⟹x×120=24000
\begin{gathered}:\implies\sf x = \cancel{ \dfrac{24000}{120}}\\ \\\end{gathered}
:⟹x=
120
24000
\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{x = 200\;m}}}}}\;\bigstar\\ \\\end{gathered}
:⟹
x=200m
★
\therefore\:{\underline{\sf{Length\:of\;rectangular\;field\:is\: {\textsf{\textbf{200\;m}}}.}}}∴
Lengthofrectangularfieldis200m.
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀
☯ Now, Finding length of wire that will be required to fence the field.
⠀⠀⠀⠀
Length of wire required in one round = Perimeter of field
⠀⠀⠀⠀
\begin{gathered}\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\\end{gathered}
⋆
Perimeter
(rectangle)
=2(length+breadth)
\begin{gathered}:\implies\sf Perimeter_{\;(rectangle)} = 2(200 + 120)\\ \\\end{gathered}
:⟹Perimeter
(rectangle)
=2(200+120)
\begin{gathered}:\implies\sf Perimeter_{\;(rectangle)} = 2 \times 320\\ \\\end{gathered}
:⟹Perimeter
(rectangle)
=2×320
\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(rectangle)} = 640\;m}}}}}\;\bigstar\\ \\\end{gathered}
:⟹
Perimeter
(rectangle)
=640m
★
\therefore\:{\underline{\sf{Perimeter\:of\;rectangular\;field\:is\: {\textsf{\textbf{640\;m}}}.}}}∴
Perimeterofrectangularfieldis640m.
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀
Therefore,
⠀⠀⠀⠀
Length of wire required to fence the field in one round = 640 m
Length of wire required to fence the field in two round = 2 × 640 = 1280 m
⠀⠀⠀⠀
\therefore\:{\underline{\sf{Hence,\:Total\:Length\:of\;wire\; required\:is\:{\textsf{\textbf{1280\;m}}}.}}}∴
Hence,TotalLengthofwirerequiredis1280m.
Explanation:
I HOPE IT HELP
Mark me as a brainleist