Math, asked by axelwilliam, 1 month ago

with explanation plz

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Given \:Question - }}

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi} \frac{sinx}{x - \pi}

(A) 1

(B) 2

(C) - 1

(D) - 2

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi} \frac{sinx}{x - \pi}

If we put directly the value of x, we get

\rm \:  =  \: \dfrac{sin\pi}{\pi - \pi}

\rm \:  =  \: \dfrac{0}{0}  \:  \: which \: is \: meaningless

So, to evaluate this limit,

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi} \frac{sinx}{x - \pi}

\red{ \boxed{ \sf{ \:Put \: x = \pi - h, \: as \: x \:  \to \: \pi, \: so \: h \:  \to \: 0}}}

So, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{sin(\pi - h)}{\pi - h - \pi}

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{sinh}{ - h}

\red{\bigg \{ \because \:sin(\pi - h) =  -  \: sinh \bigg \}}

\rm \:  =   - \: \displaystyle\lim_{h \to 0} \frac{sinh}{ h}

\rm \:  =  \:  -  \: 1

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to \pi} \frac{sinx}{x - \pi}  =  -  \: 1}}}

  • Option (C) is correct.

Additional Information :-

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \:  \: }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \:  \: }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \:  \: }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{ {e}^{x} - 1 }{x} = 1 \:  \: }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{ {a}^{x} - 1 }{x} = loga \:  \: }}}

Similar questions