Physics, asked by nidhineena7972, 1 year ago

With neat sketch explain the Battery ignition system.

Answers

Answered by mayra31
7
Most of the modern spark-ignition engines use battery ignition system. The essential components of battery ignition system are a battery, ignition switch, ballast resistor, ignition coil, breaker points, condenser, capacitor distributor and spark plugs.

The breaker points, condenser, distributor rotor and the spark advance mechanisms are usually housed in the ignition distribution. The breaker points are actuated by a shaft driven at half engine speed for a four stroke cycle engine. The distributor rotor is directly connected to the same shaft.

The system has a primary circuit of low-voltage current and a secondary circuit for the high-voltage circuit.

The primary circuit consists of the battery, ammeter, ignition switch, primary coil winding and breaker points. The primary coil winding usually has approximately 240 turns of relatively heavy copper wire wound around the soft iron core of ignition coil.

The secondary circuit contains the secondary coil windings, distributor, spark plug leads and the spark plug. The secondary windings consists of about 21000 turns of small, well insulate copper

When the ignition switch and the breaker points are closed a low-voltage current flows from the battery through the primary circuit and builts up a magnetic field around the soft iron core of the ignition coil.

When the breaker points are opened by the action of the cam on the distributor shaft, the primary circuit is broken and the magnetic field begins to collapse, an induced current from the collapsing magnetic field flows in the same direction in the primary circuit as the battery current and charges the condenser which acts as a reservoir for the flowing current due to a rapidly collapsing magnetic field, high voltage is induced in the primary (it might be as high as 250 volts) and even higher in the secondary (10,000 to 20,000 volts).

The high voltage in the secondary passes through the distributor rotor to one of the spark plug leads and into the spark plug. As soon as sufficient voltage is built up in the secondary to overcome the resistance of a spark plug, the spark arcs across the gap and the ignition of the combustible charge in the cylinder takes place.

The induced current in the primary to overcome the resistance of a spark across the gap and the ignition of the combustible charge in the cylinder takes place. The induced current is the primary, as it was pointed out above flows in the same direction as it did before the breaker points opened up and charges the condenser.


Attachments:
Similar questions