With out using truth tables, find the PDNF and PCNF of the following statements (a) )) (P → (P ∧ (Q → P (b) ) (Q → P) ∧ (~ P ∧
Answers
Answered by
0
Explanation:
Expression mentioned is a Tautology.
((p.q)→r)+((p.q)→r′)=((p′+q′+r)+(p′+q′+r′))=p′+q′+1=1
So PDNF corresponding to it is
(p′.q′.r′)+(p′.q′.r)+(p′.q.r′)+(p′.q.r)+(p.q′.r′)+(p.q′.r)+(p.q.r′)+(p.q.r)
The required normal form is ( if I am not wrong ):-
(p^q^r)v(~p^q^r)v(~p^~q^r)v(p^q^~r)
Once you get the form : (¬p∨¬q∨r)∨(¬p∨¬q∨¬r)
Treat this as (¬p)∨(¬q)∨(r)∨(¬p)∨(¬q)∨(¬r)
And convert the individual literals into minterms.
To convert any variable P to a minterm ,just add : ^(Qv~Q)^(Rv~R) to P
That is :P^(Qv~Q)^(Rv~R)
And then use the distributive laws.
Similar questions
India Languages,
19 days ago
Hindi,
19 days ago
Social Sciences,
19 days ago
English,
1 month ago
Physics,
9 months ago