Math, asked by booiyah, 1 month ago

With the help of determinants , solve the following equation :
2x + 3y = 9 ;
3x -2y = 7​

Answers

Answered by mathdude500
92

\large\underline{\sf{Solution-}}

Given pair of linear equations is

\rm :\longmapsto\:2x + 3y = 9

and

\rm :\longmapsto\:3x - 2y = 7

So, the above equations in matrix form can be represented as

\rm :\longmapsto\:\bigg[ \begin{matrix}2&3 \\ 3& - 2 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}9\\7\end{array}\right]\end{gathered}

\rm :\longmapsto\:AX = B

Where,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2&3 \\ 3& - 2 \end{matrix} \bigg]

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}9\\7\end{array}\right]\end{gathered}

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

Now, Consider,

 \red{\rm :\longmapsto\: |A|}

\rm \:  =  \:\begin{array}{|cc|}\sf 2 &\sf 3 \\ \sf 3 &\sf  - 2 \\\end{array}

\rm \:  =  \: - 4 - 9

\rm \:  =  \: - 13

\bf\implies \:\boxed{ \tt{ \:  |A| =  -  \: 13 \: }}

So, system of equations have unique solution.

Now, Consider

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf 9 &\sf 3  \\ \sf 7 &\sf  - 2 \\\end{array}

\rm \:  =  \: - 18 - 21

\rm \:  =  \: -  \: 39

\bf\implies \:\boxed{ \tt{ \: D_1 =  - 39 \: }}

Now, Consider

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 2 &\sf 9  \\ \sf 3 &\sf 7 \\\end{array}

\rm \:  =  \:14 - 27

\rm \:  =  \: -  \: 13

\bf\implies \:\boxed{ \tt{ \: D_2 =  - 13 \: }}

Now, Using Cramer's Rule, we have

\bf\implies \:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 39}{ - 13}  = 3

and

\bf\implies \:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 13}{ - 13}  = 1

Verification :-

Consider,

\rm :\longmapsto\:2x + 3y = 9

On substituting the values of x and y, we get

\rm :\longmapsto\:2(3) + 3(1) = 9

\rm :\longmapsto\:6 + 3= 9

\bf\implies \:9 = 9

Hence, Verified

Answered by MichhDramebaz
8

\large{\underbrace{\underline{\color{magenta}{\bf{Solution:-}}}}}

Given equations

2x+3y=9,3x−2y=7

here,

x =   \frac{ ∆_{1} }{∆}  =  \frac{ - 39}{ - 13}  = 3 \\

and \:  \: y =  \frac{ ∆_{2}}{∆}  =  \frac{ - 13}{ - 13}  = 1 \\

solution of equation

\Huge{\color{magenta}{\fbox{\textsf{\textbf{X =3 }}}}}

\Huge{\color{magenta}{\fbox{\textsf{\textbf{Y= 1}}}}}

Similar questions