Math, asked by Sdsdsdsdtttt, 11 months ago

With the help of distance formula, show that the points A (4,2), B(7,5), and C(9,7) do not form a triangle.

Answers

Answered by Anonymous
242

 \underline{ { \colorbox{yellow}{Solution.}}}

 \rm We \: have,

 \:  \:  \:  \:  \:  \: A \implies( 4, 2 )

 \:  \:  \:  \:  \: B \implies( 7, 5 )

 \:  \:  \:  \:  \:  \: C \implies( 9, 7 )

 \bf \red{By \: Using \: Distant \: Formula}

 \:  \:  \:  \:  \sf  \purple{  \:  \: AB }=  \:  \:  \sqrt[]{(7 - 4) {}^{2}  { + (5 - 2) {}^{} }^{2} }

 \sf  \:  \:  \:  \:  \:  \:  \: =  \:  \:  \:  \sqrt[]{(3) {}^{2} }  + (3) {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \:   \sqrt[]{9 + 9 \: }  =  \sqrt[]{13 \: }

 \:  \:  \:  \:  \sf \purple{ BC} =  \sqrt[]{(9 - 7)  {}^{2} +( 7 - 5)  {}^{2} }

 \:   \:  \:  \: \:  \:  \sf =  \:  \sqrt[]{4 + 4 \: }  =  \sqrt{8 \: }

 \:  \:  \:  \:  \:  =  \sqrt{4 \times 2 \: }  = 2 \sqrt{2 \: }

 \rm and

 \:   \: \:  \sf \purple{ CA} =  \sqrt{(4 - 9) {}^{2}  +( 2 - 7)}  {}^{2}

  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{( - 5) {}^{2}  + ( - 5) {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \sqrt{25 + 25 \:  \:  \:  \:  }  \:  \:  \:  \:  =  \sqrt{50}

 \sf  \sqrt{25 \times 2 \: }  = 5 \sqrt{2 \: }

 \sf \red{We \: find \: that}

 \:  \:  \:  \:  \:  \:  \:  \:  \bf </strong><strong>AB</strong><strong> + </strong><strong>BC</strong><strong> = 3 \sqrt{2}  + 2 \sqrt{2}

 \:  \:  \:  \:  \:  \sf = \:  \:  (3 + 2) \sqrt{2 \: }

 \sf = 5 \sqrt{2 \: }  = </strong><strong>CA</strong><strong>

\implies\tt \: </strong><strong>T</strong><strong>he \ points \: </strong><strong>A</strong><strong> \: </strong><strong>B</strong><strong> \: and \: </strong><strong>C</strong><strong> \: are \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \tt colliniar.

 \implies \tt \: </strong><strong>T</strong><strong>he \: points \: </strong><strong>A</strong><strong> \: </strong><strong>B </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>and</strong><strong> \: </strong><strong>C</strong><strong> \: do \: not \:  \\  \tt \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  form \: a \: triangle.

Answered by Anonymous
45

AnswEr :

\:\:\:\small\bullet These points are collinear.

\:\:\:\small\bullet Points do not form a triangle.

 \rule{100}2

ExplaNation :

\underline{\bigstar\:\textsf{According \: to \: Question:}}

\:\:\:\bullet Three points are given :-

\:\:\:\:\:\star A = (4,2)

\:\:\:\:\:\star B = (7,5)

\:\:\:\:\:\star C = (9,7)

\:\:\:\bullet We use Distance formula to find sides(i.e. AB,BC and CA).

\star{\boxed{\sf{Distance \: formula = \sqrt{(x_2- x_1)^2 + (y_2 - y_1)^2} }}}

\:\:\:\bullet Now; Let's solve

\:\:\star Distance of AB -

\normalsize\hookrightarrow\sf\sqrt{(7- 4)^2 + (5 - 2)^2} \\ \\ \normalsize\hookrightarrow\sf\sqrt{(3)^2 + (3)^2} \\ \\ \normalsize\hookrightarrow\sf\sqrt{(9+9)}  \\ \\ \normalsize\hookrightarrow\sf\sqrt{18} \: = \: \sqrt{2 \times\ 3 \times\ 3} \\ \\ \normalsize\hookrightarrow\sf\ AB = 3\sqrt{2} \: units

\:\:\star Distance of BC -

\normalsize\hookrightarrow\sf\sqrt{(9-7)^2 + (7-5)^2} \\ \\ \normalsize\hookrightarrow\sf\sqrt{(2)^2 + (2)^2} \\ \\ \normalsize\hookrightarrow\sf\sqrt{(4 + 4)} \\ \\ \normalsize\hookrightarrow\sf\sqrt{8} \: = \: \sqrt{2 \times\ 2 \times\ 2} \\ \\ \normalsize\hookrightarrow\sf\ BC \: = \: 2\sqrt{2} \: units

\:\:\star Distance of AC -

\normalsize\hookrightarrow\sf\sqrt{(4-9)^2 + (2-7)^2} \\ \\ \normalsize\hookrightarrow\sf\sqrt{(-5)^2 + (-5)^2} \\ \\ \normalsize\hookrightarrow\sf\sqrt{ 25 + 25} \\ \\ \normalsize\hookrightarrow\sf\sqrt{50} \: = \: \sqrt{ 2 \times\ 5 \times\ 5} \\ \\ \normalsize\hookrightarrow\sf\ AC \: = \: 5\sqrt{2} \: units

\:\:\:\bullet Now; we know that a triangle is formed by points if Sum of two sides is greater than third side(i.e. AB + BC > AC), Let's check,by blocking the values in available data.

\normalsize\hookrightarrow\sf\ AB + BC &gt; AC

\normalsize\hookrightarrow\sf\ 3\sqrt{2} + 2\sqrt{2} &gt; 5\sqrt{2} \\ \\ \normalsize\hookrightarrow\sf\ 5\sqrt{2} = 5\sqrt{2}

\:\:\:\bullet Here we can see,that sum of two points is equal to the third side (i.e. AB + BC = AC), so these points do not form a triangle.

\Large\hookrightarrow{\underline{\boxed{\sf\green{Hence \: prove \:!!}}}}

Similar questions