With the help of the graph, derive the first equation of motion
Answers
The first equation of motion is v = u + at.
It is known that the acceleration(a) of the body is defined as the rate of change of velocity.
So, the acceleration can be written as
a = v + ut
From this , rearranging the terms, the first equation of motion is obtained which is v = u + at.
Graph;
In this, the body is moving with an initial velocity of u at point A. The velocity of the body then changes from A to B in time t at a uniform rate. In the above diagram, BC is the final velocity i.e. v after the body travels from A to B at a uniform acceleration of a. In the graph, OC is the time t. Then, a perpendicular is drawn from B to OC, a parallel line is drawn from A to D, and another perpendicular is drawn from B to OE (represent by dotted lines).
Following details are obtained from the graph above:
The initial velocity of the body, u = OA
The final velocity of the body, v = BC
From the graph,BC = BD + DC
So, v = BD + DC
v = BD + OA (since DC = OA)
Finally, v = BD + u (since OA = u) (Equation 1)
Now, since the slope of a velocity-time graph is equal to acceleration a,
So,
a = slope of line AB
a = BD/AD
Since AD = AC = t, the above equation becomes:
BD = at (Equation 2)
Now, combining Equation 1 & 2, the following is obtained:
v = at + u.
Hope this answer will help you!!✌❤