Physics, asked by tejaramnemala, 11 months ago

With what minimum speed must a particle be projected from origin so that it is able
to pass through a given point (30m, 40m). Take g = 10 m/s2.
1) 60 m/s
2) 30 m/s
3) 50 m/s
4)40 m/s​

Answers

Answered by nirman95
10

Given:

A particle is projected such that it passes through a point (30m,40m).

To find:

Minimum velocity of projection.

Calculation:

General Equation for projectile is:

y = x \tan( \theta)   -  \dfrac{g {x}^{2}  }{2 {u}^{2} { \cos}^{2} ( \theta) }

Putting value of x and y:

 =  > 40 = 30 \tan( \theta)   -  \dfrac{4500 }{ {u}^{2} { \cos}^{2} ( \theta) }

 =  > 40 = 30 \tan( \theta)   -  \dfrac{4500  \:  { \sec}^{2}( \theta) }{ {u}^{2} }

 =  > 40 = 30 \tan( \theta)   -  \dfrac{4500  \: \{ 1 +  { \tan}^{2}( \theta) \} }{ {u}^{2} }

 =  > 40  -  30 \tan( \theta)    =  -  \dfrac{4500  \: \{ 1 +  { \tan}^{2}( \theta) \} }{ {u}^{2} }

 =  >  {u}^{2}  =  -  \dfrac{4500  \: \{ 1 +  { \tan}^{2}( \theta) \} }{ 40 - 30 \tan( \theta)  }

 =  >  {u}^{2}  =  \dfrac{4500  \: \{ 1 +  { \tan}^{2}( \theta) \} }{  30 \tan( \theta)  - 40 }

Minimum value of the trigonometric complex is:

 =  >  {u}^{2}  =   \dfrac{4500}{5}

 =  >  {u}^{2}  =   900

 =  > u = 30 \: m {s}^{ - 1}

So, final answer is:

 \boxed{ \bold{ \red{ \large{ u = 30 \: m {s}^{ - 1} }}}}

Answered by 8888ucpl49
1

Answer:

30 m/s

Explanation:

hope it helps u

plss mark me as brainliest

Similar questions