Math, asked by lalithmayursangars, 7 months ago

without actual calculating the cubes, find the value of (½)³+(⅓)³-(5/6)³​

Answers

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If x + y + z = 0 then

 {x}^{3}  +  {y}^{3}  +  {z}^{3}  = 3xyz

TO EVALUATE

 \: \displaystyle \:  { \bigg( \frac{1}{2}  \bigg)}^{3}  + { \bigg( \frac{1}{3}  \bigg)}^{3}  -  { \bigg(   \frac{5}{6}  \bigg)}^{3}

EVALUATION

Let

 \displaystyle \: x = \frac{1}{2} \:  ,  \: y = \frac{1}{3}  \: ,  \: z  -  \frac{5}{6}

Then

 \displaystyle \: x + y + z =  \frac{1}{2}  +  \frac{1}{3}  -  \frac{5}{6}  =  \frac{(3 + 2 - 5)}{6}  = 0

So by the above mentioned formula we get

\displaystyle \:  {x}^{3}  +  {y}^{3}  +  {z}^{3}  = 3xyz

 \implies \: \displaystyle \:  { \bigg( \frac{1}{2}  \bigg)}^{3}  + { \bigg( \frac{1}{3}  \bigg)}^{3} + { \bigg(  - \frac{5}{6}  \bigg)}^{3} = 3 \times  \: \bigg( \frac{1}{2}  \bigg) \times \bigg( \frac{1}{3}  \bigg) \times \bigg(   - \frac{5}{6}  \bigg)

 \implies \: \displaystyle \:  { \bigg( \frac{1}{2}  \bigg)}^{3}  + { \bigg( \frac{1}{3}  \bigg)}^{3} + { \bigg(  - \frac{5}{6}  \bigg)}^{3} =  -   \:  \frac{5}{12}

RESULT

 \boxed{  \: \: \displaystyle \:  { \bigg( \frac{1}{2}  \bigg)}^{3}  + { \bigg( \frac{1}{3}  \bigg)}^{3}  -  { \bigg(   \frac{5}{6}  \bigg)}^{3} =  -   \:  \frac{5}{12}  \:  }

Similar questions