Math, asked by Anonymous, 2 months ago

Without actual division . find the reminder

1) \frac{ \large \: x⁶ - 3x⁵ + 2x² - 7 }{ \large \: x - 3}
2) \frac{ \large \:  x³ + 5x² + 9x + 10}{ \large \: x - 2}
3) \frac{ \large9x³ - 7x² + 3x-5}{\large3x - 1}
4)  {\frac {x {}^{21}  + 5x {}^{11} - 1 }{x + 1}}
5) \large  \frac{4x³ - 12 x² + 11x }{x +  \frac{3}{2} }
6)  \frac{2x {}^{4}  -3x {}^{3}  - 5x {}^{2}  + 8x - 3}{x -  \frac{3}{2} }
7) \frac{5x³ + 9x² + 2x + 10}{ \frac{x}{2} + 1 }
Class 9 ​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:1) \:  \:  \frac{ \large \: x⁶ - 3x⁵ + 2x² - 7 }{ \large \: x - 3}

Let assume that

\rm :\longmapsto\:p(x) \:  =  \:  {x}^{6}  - 3 {x}^{5}  + 2 {x}^{2}  - 7

We Know

Remainder Theorem states that when a polynomial p (x) is divided by linear polynomial x - a, then remainder is p(a).

So,

Remainder is

\rm :\longmapsto\:p(3) \:  =  \:  {(3)}^{6}  - 3 {(3)}^{5}  + 2 {(3)}^{2} - 7

\rm :\longmapsto\:p(3) = 729 - 729 + 18 - 7

\rm :\longmapsto\:p(3) = 11

\rm :\longmapsto\:2) \:  \:  \frac{ \large \:  {x}^{3}  + 5 {x}^{2}  + 9x + 10}{ \large \: x - 2}

Let assume that

\rm :\longmapsto\:p(x) = {x}^{3}  + 5 {x}^{2}  + 9x + 10

So,

Using Remainder Theorem, we get

\rm :\longmapsto\:p(2) = {2}^{3}  + 5 {(2)}^{2}  + 9(2) + 10

\rm :\longmapsto\:p(2) = 8 + 20 + 18 + 10

\rm :\longmapsto\:p(2) = 56

\rm :\longmapsto\:3)  \: \frac{ \large9 {x}^{3}  - 7 {x}^{2}  + 3x-5}{\large3x - 1}

Let assume that

\rm :\longmapsto\:p(x) = {9x}^{3} - 7 {x}^{2}  + 3x - 5

So, using Remainder Theorem, we get

\rm :\longmapsto\:p\bigg[\dfrac{1}{3} \bigg] = 9{\bigg[\dfrac{1}{3} \bigg]}^{3} - 7 {\bigg[\dfrac{1}{3} \bigg]}^{2}  + 3\bigg[\dfrac{1}{3} \bigg] - 5

\rm :\longmapsto\:p\bigg[\dfrac{1}{3} \bigg] = \dfrac{1}{3}  - \dfrac{7}{9}  +1  - 5

\rm :\longmapsto\:p\bigg[\dfrac{1}{3} \bigg] = \dfrac{1}{3}  - \dfrac{7}{9} - 4

\rm :\longmapsto\:p\bigg[\dfrac{1}{3} \bigg] = \dfrac{3 - 7 + 39}{9}

\rm :\longmapsto\:p\bigg[\dfrac{1}{3} \bigg] = \dfrac{35}{9}

\rm :\longmapsto\: \:4)  \: {\dfrac {x {}^{21} + 5x {}^{11} - 1 }{x + 1}}

Let assume that

\rm :\longmapsto\:p(x) = {x {}^{21} + 5x {}^{11} - 1}

So, Using Remainder Theorem, we get

\rm :\longmapsto\:p( - 1) = {{( - 1)}^{21} + 5{( - 1)}^{11} - 1}

\rm :\longmapsto\:p( - 1) = - 1 - 5 - 1

\rm :\longmapsto\:p( - 1) = - 7

\rm :\longmapsto\:5) \:  \:  \large \dfrac{4 {x}^{3}  - 12  {x}^{2}  + 11x }{x + \frac{3}{2} }

Let assume that,

\rm :\longmapsto\:p(x) = 4 {x}^{3}  - 12  {x}^{2}  + 11x

So, Using Remainder Theorem, we get

\rm :\longmapsto\:p\bigg[ - \dfrac{3}{2} \bigg] = 4 {\bigg[ - \dfrac{3}{2} \bigg]}^{3}  - 12  {\bigg[ - \dfrac{3}{2} \bigg]}^{2}  + 11\bigg[ - \dfrac{3}{2} \bigg]

\rm :\longmapsto\:p\bigg[ - \dfrac{3}{2} \bigg] =  - \dfrac{27}{2} - 27 - \dfrac{33}{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{3}{2} \bigg] =  \dfrac{ - 27 - 54 - 33}{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{3}{2} \bigg] =  \dfrac{ - 114}{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{3}{2} \bigg] =  -  \: 57

\rm :\longmapsto\:6)  \: \dfrac{2x {}^{4} -3x {}^{3} - 5x {}^{2} + 8x - 3}{x - \frac{3}{2} }

Let assume that

\rm :\longmapsto\:p(x) = 2x {}^{4} -3x {}^{3} - 5x {}^{2} + 8x - 3

So, using Remainder Theorem, we have

\rm :\longmapsto\:p\bigg[\dfrac{3}{2} \bigg] = 2{\bigg[\dfrac{3}{2} \bigg]}^{4} -3{\bigg[\dfrac{3}{2} \bigg]}^{3} - 5{\bigg[\dfrac{3}{2} \bigg]}^{2} + 8\bigg[\dfrac{3}{2} \bigg] - 3

\rm :\longmapsto\:p\bigg[\dfrac{3}{2} \bigg] = \dfrac{81}{8}  - \dfrac{81}{8}  - \dfrac{45}{4}  + 12 - 3

\rm :\longmapsto\:p\bigg[\dfrac{3}{2} \bigg] = - \dfrac{45}{4}  +9

\rm :\longmapsto\:p\bigg[\dfrac{3}{2} \bigg] = \dfrac{ - 45 + 36}{4}

\rm :\longmapsto\:p\bigg[\dfrac{3}{2} \bigg] = -  \:  \dfrac{9}{4}

\rm :\longmapsto\:7)  \: \dfrac{5 {x}^{3}  + 9 {x}^{2}  + 2x + 10}{ \dfrac{x}{2} + 1 }

Let assume that

\rm :\longmapsto\:p(x) = 5 {x}^{3}  + 9 {x}^{2}  + 2x + 10

So, by using Remainder Theorem, we get

\rm :\longmapsto\:p( - 2) = 5 {( - 2)}^{3}  + 9 {( - 2)}^{2}  + 2( - 2) + 10

\rm :\longmapsto\:p( - 2) =  - 40  + 36 - 4 + 10

\rm :\longmapsto\:p( - 2) =  2

Similar questions