Without actual division, prove that 3x⁴- 2x³ - 2x² - 2x - 5 is exactly divisible
by 3x²- 2x -5.
Answers
Answered by
6
Step-by-step explanation:
First, we factorize 3x²- 2x -5
3x²- 2x -5
= 3x²- 5x + 3x -5
= x (3x - 5) + 1 (3x -5)
= (x+ 1)(3x - 5)
Second, we use (x + 1) and (3x -5) in 3x⁴- 2x³ - 2x² - 2x - 5
x + 1 = 0
x = -1
p(-1) = 3(-1)⁴- 2(-1)³ - 2(-1)² - 2(-1) - 5
= 3 + 2 - 2 + 2 - 5
= 0
3x - 5 =0
x = 5/3
p(5/3) = 3(5/3)⁴- 2(5/3)³ - 2(5/3)² - 2(5/3) - 5
= 625/27 - 250/27 - 50/9 - 10/3 - 5
= 625/27 - 250/27 - 150/27 - 90/27 - 135/27
= 0/27
=0
Therefore
3x⁴- 2x³ - 2x² - 2x - 5 is exactly divisible
by 3x²- 2x -5
Similar questions