Math, asked by br10219050408, 11 months ago

without actual division show that each of the following rational number is a terminating decimal Express each in decimal form first 20352 power 3 into 5 power 2 second 24 by 125 third 171/800 fourth 15/1600 fifth 17/320 sixth 19/3125​

Answers

Answered by hukam0685
10

Step-by-step explanation:

Without actual division show that each of the following rational number is a terminating decimal Express each in decimal form

1) \frac{ 20352}{ {3 \times 5}^{2} }  \\  \\ 2) \frac{24}{125}  \\  \\ 3) \frac{171}{800}  \\  \\ 4) \frac{15}{1600}  \\  \\ 5) \frac{19}{3125}  \\  \\

To solve these questions:

1) Calculate the prime factors of denominator

2) If those factors are in the form

 {2}^{n}  \times  {5}^{m}   \:  \:  \:  \: m \:, n \:  \geqslant 0

then the numbers have terminating decimal expansion.

1) \frac{ (20352) }{3 \times (  {5)}^{2} }  \\  \\ it \: is \:  \: shown \: that \: factors \: of \: denominator \: are \: not \: in \:  \\ form \:  {2}^{n}  \times  {5}^{m}  \\  \\ but \: the \: given \: number \: is \: not \: simple \: rational \: number  \\ \: so \: convert \: it \: into \: simple \: form \: first \\  \\  \frac{6784}{ {5}^{2} }  \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\  \\  \frac{6784 \times 4}{ {(2 \times 5)}^{2} }  \\  \\  =  \frac{27136}{( {10)}^{2} }  \\  \\  =  \frac{27136}{100}  = 271.36 \\  \\

2) \:  \frac{24}{125}  =  \frac{24}{ {(5)}^{3} }  \\ it \: is \:  \: shown \: that \: factors \: of \: denominator \: are \:  \: in \:  \\ form \:  {2}^{n}  \times  {5}^{m}  \\  \\  this \: rational \: number \: have \: terminating \: decimal \: expansion. \\  \\ \frac{24 \times  {(2}^{3} )}{( {5}^{3})( {2}^{3} ) }  \\  \\  =  \frac{24 \times8 }{( {10)}^{3} }  \\  \\  =  \frac{192}{1000}  = 0.192 \\  \\

3) \frac{171}{800}  \\  \\  =  \frac{171}{( {2}^{5})( {5}^{2}  )}  \\  \\ it \: is \:  \: shown \: that \: factors \: of \: denominator \: are \:  \: in \:  \\ form \:  {2}^{n}  \times  {5}^{m}  \\  \\  this \: rational \: number \: have \: terminating \: decimal \: expansion. \\  \\ \frac{171 \times  {(5}^{3} )}{( {2}^{5})( {5}^{5} ) }  \\  \\  =  \frac{171 \times125 }{( {10)}^{5} }  \\  \\  =  \frac{21375}{100000}  = 0.21375 \\  \\

4) \frac{15}{1600}  \\ \\   =  \frac{15}{  {2}^{6}   \times  {5}^{2} }  \\  \\  =  \frac{3}{ {2}^{6}  \times 5}  \\  \\  =  \frac{3 \times  {5}^{5} }{ {2}^{6}  \times  {5}^{6} }  \\  \\  =  \frac{3 \times3125 }{( {10)}^{6} }  \\  \\  =  \frac{9375}{1000000}  \\  \\  = 0.009375 \\  \\ it \: is \:  \: shown \: that \: factors \: of \: denominator \: are \:  \: in \:  \\ form \:  {2}^{n}  \times  {5}^{m}  \\  \\  this \: rational \: number \: have \: terminating \: decimal \: expansion. \\  \\

5) \frac{17}{320}  \\  \\ \frac{17}{ {2}^{6} \times 5 }  it \: is \:  \: shown \: that \: factors \: of \: denominator \: are \:  \: in \:  \\ form \:  {2}^{n}  \times  {5}^{m}  \\  \\  this \: rational \: number \: have \: terminating \: decimal \: expansion. \\  \\ \frac{17 \times  {(5}^{5} )}{( {2}^{6})( {5}^{6} ) }  \\  \\  =  \frac{17\times \: 3125}{( {10)}^{6} }  \\  \\  =  \frac{53125}{1000000}  = 0.053125 \\  \\

6) \frac{19}{3125}  \\  \\  =  \frac{19}{ {5}^{5} }  \\  \\ it \: is \:  \: shown \: that \: factors \: of \: denominator \: are \:  \: in \:  \\ form \:  {2}^{n}  \times  {5}^{m}  \\  \\  this \: rational \: number \: have \: terminating \: decimal \: expansion. \\  \\ \frac{19 \times  {(2}^{5} )}{( {5}^{5})( {2}^{5} ) }  \\  \\  =  \frac{19 \times \: 32 }{( {10)}^{5} }  \\  \\  =  \frac{608}{100000}  = 0.00608 \\  \\

Hope it helps you.

Similar questions