Without Actually calculating the cubes evaluate :
(28)^3+(-15)^3+(-13)^3
Answers
Answered by
12
a=28
b= -15
c= -13
If a+b+c = 0 then a^3+b^3+c^3=3abc
a+b+c=28+(-15)+(-13)
a+b+c=0
Therefore,
a^3+b^3+c^3=3abc
28^3+(-15)^3+(-13)^3=3 (28)(-15)(-13)
=3×5460
=16380
b= -15
c= -13
If a+b+c = 0 then a^3+b^3+c^3=3abc
a+b+c=28+(-15)+(-13)
a+b+c=0
Therefore,
a^3+b^3+c^3=3abc
28^3+(-15)^3+(-13)^3=3 (28)(-15)(-13)
=3×5460
=16380
Kriti05:
Oh thanks. ..
Answered by
10
We know that,
a³ + b³ + c³ = 3abc
now,
Let
a = 28
b = - 15
c = - 13
( 28 )³ + ( - 15 )³ + ( - 13 )³
= 3 ( 28 ) ( - 15 ) ( - 13 )
= 16380
thanks
==================================
a³ + b³ + c³ = 3abc
now,
Let
a = 28
b = - 15
c = - 13
( 28 )³ + ( - 15 )³ + ( - 13 )³
= 3 ( 28 ) ( - 15 ) ( - 13 )
= 16380
thanks
==================================
Similar questions