Math, asked by ahlxx816, 9 months ago

without actually calculating the cubes find the value of each of the following
1) (-12)^3+7^3+5^3
2) (28)^3+(-15)^3+(-13)^2

Answers

Answered by kavitatyagi776
2

Answer:

1.-12³+7³+5³

1.-12³+7³+5³the identity a³+b³+c³says that

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abc

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -1260

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 then

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 thenA³+B³+C³= 3abc

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 thenA³+B³+C³= 3abc3(28)(-15)(-13)

1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 thenA³+B³+C³= 3abc3(28)(-15)(-13)=16,380

Similar questions