without actually calculating the cubes find the value of each of the following
1) (-12)^3+7^3+5^3
2) (28)^3+(-15)^3+(-13)^2
Answers
Answered by
2
Answer:
1.-12³+7³+5³
1.-12³+7³+5³the identity a³+b³+c³says that
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abc
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -1260
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 then
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 thenA³+B³+C³= 3abc
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 thenA³+B³+C³= 3abc3(28)(-15)(-13)
1.-12³+7³+5³the identity a³+b³+c³says that if a+b+c=0 then A³+B³+C³ =3abcsame thing implies here-12+7+5=0then -12³+7³+5³=3(-12)(7)(5)ans....= -12602. 28+(-15)+(-13)=0 thenA³+B³+C³= 3abc3(28)(-15)(-13)=16,380
Similar questions